Oracle® Database
Application Developer's Guide - Fundamentals

10g Release 1 (10.1)
Part No. B10795-01

December 2003

ORACLE

Oracle Database Application Developer's Guide - Fundamentals, 10g Release 1 (10.1)
Part No. B10795-01

Copyright © 1996, 2003 Oracle Corporation. All rights reserved.

Primary Authors: Drew Adams, Eric Paapanen

Contributing Authors: M. Cowan, R. Moran, J. Russell, R. Strohm

Contributors: D. Alpern, G. Arora, C. Barclay, D. Bronnikov, T. Chang, M. Davidson, G. Doherty, D.
Elson, A. Ganesh, M. Hartstein, J. Huang, N. Jain, R. Jenkins Jr., S. Kotsovolos, S. Kumar, C. Lei, D.
Lorentz, R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong, A. Yalamanchi, Q. Yu

Graphic Designer: V. Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and ConText, Oracle Store, Oracle8i, Oracle9i, PL/SQL, Pro*COBOL,
Pro*C, Pro*C/C++, SQL*Net, and SQL*Plus are trademarks or registered trademarks of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us YOUr COMMENTES ... XXV
Preface............... e Xxvii
ATIEIICE ... bbbt XXVii
Organization ..o s XXiX
Related DOCUMENTATION «...c.cvviiiiiiiiiiciiciccre e XXXi
CONVENEIONS ..ottt e XXXiii
Documentation ACCeSSIDILItYccciiuiiiiiiiiiiciccccec s XXXV
What's New in Application Development?. ... XXXVii
New Application Development Features in Oracle Database 10g Release 1..............ccc....... XXXVii
New Application Development Features in Oracle9i Release 2cccoevevivvvvnevccnnnenns XXXiX
New Application Development Features in Oracle9i Release 1..........cccccoouivivivininniiicnnne xlii

Partl Introduction to Application Development Features of Oracle Database

1 Programmatic Environments

Overview of Developing an Oracle Database Application.............ccccocovvviiiiniiinnnnn, 1-2
OVerview Of PLISQLL ...ttt ettt ettt e v e s e e e ve e tb e e beeebeeeabeessbesaseensaeesseeseenn 1-3
A Simple PL/SQL EXQMPLEooviiiiiiiiicicccceeerce e 1-4
Advantages of PL/SQL ..o 1-5
Full Support for SQL.......coiiiiiieecree e 1-5

Tight Integration with Oracle Database...........cccccoecuiiiiiniciiieeerer e 1-5

Better Performance...........cccocviiciiiiiiiiiiiii s 1-5

Higher PrOAUCHVILYcooovieiiiiiciicciccccceeec e 1-6

SCALADILIY ...t e 1-6
Maintainabilitycccciiuiiiiiiiccc s 1-6
PL/SQL Support for Object-Oriented Programmingcccccccecuvueueveruevneeneeecnennnes 1-6
ODBJECt TYPEOS ..eveieet s 1-6
COLLECHIONS ... 1-7
POTtability c.cocvvieiecieiee s 1-7
SOCUTIEY ¢ttt 1-7
Built-In Packages for Application Developmentcccccoieiicicicieecceneeeeennes 1-7
Built-In Packages for Server Management.............ccoueuirieieieiiieieiccccece s 1-8
Built-In Packages for Distributed Database Access..........ccccooireiiiiiccieiiiiicce 1-8
Overview of Java Support Built Into the Database............c.cocccoeiniiniininnicccceeeeee 1-8
OVerview Of Oracle JVMottt sttt ettt e s e b et e beseseenteneene 1-8
Overview of Oracle Extensions t0 JDBCcccoioiiiriiiiiereieeeeeeee et 1-9
JDBC Tl DIIVET....ciuieticieciiieieieietetee ettt sttt ettt tesseeressessessassessassessesesssesessansenes 1-10
JDBC OCI DIIVET ..ottt 1-10
JDBC Server-Side Internal DIIVETcccoceoireieieiiiieeeeeee ettt 1-11
Oracle Database Extensions to JDBC Standardsccceeeeveeinineenienenienenieeecneeeeeeneens 1-11
Sample JDBC 2.0 PrOgrami.........ccccoioioiuriiieiiiieieeeccie it 1-12
Sample Pre-2.0 JDBC Programccccoiiiieioiiiicieieieccieieeeicie et 1-12
JDBC in SQLJ APPLCAtioNScccoviviviiiiiiiiiiiicicic e 1-13
Overview of Oracle SQL ..ottt sttt st st ettt eae e eaen 1-13
Benefits Of SQLJ ..ottt st sttt be et bean 1-15
Comparing SQLJ With JDBCcoiiiiiiiiiiiiciicccceccecceeeee e 1-15
SQLJ Stored Procedures in the SErverooeienrieienceeee et 1-16
Overview of Oracle JPUDIISNETcc.iiiiiieieeeee ettt 1-17
Overview of Java Stored ProCedurescccvieirireriesieieieieeeeee sttt eesseseesaeseeees 1-17
Overview of Database Web SeIvices ... 1-17
Database as a Web Service Provider...........cccooviiiiiiiniinicccns 1-18
Database as a Web Service CONSUIMETcccoviiiiiireiiniiiciiiccececescrecee e 1-18
Overview of Writing Procedures and Functions in Javacccoeooeoiiieiiiccce, 1-19
Overview of Writing Database Triggers in Javac.cccooeeieiiiniiiiccccccce 1-19
Why Use Java for Stored Procedures and Triggers?ccocoeiirvciiccccccciccnnnnn 1-19
OVEIVIEW Of PrO*C/CH+ ..ot 1-20

How You Implement a Pro*C/C++ Application ..o 1-20

Highlights of Pro*C/C+4+ Features..........ccccociiiiiiiiiiiiiiccccreeeeeeeeeeeee e 1-21

Overview of Pro*COBOL..........ccccoiiiiiii s 1-23
How You Implement a Pro*COBOL Application........c.ccccccueurueucieieviniinnrirreerrccseenee 1-23
Highlights of Pro*COBOL FEatures.........c.ccccecuiuiuiirinieiiiiicrirecceeeeeee e 1-24

Overview of OCIL and OCCT ... s 1-25
Advantages Of OCT ...t 1-26
Parts of the OCT........ccccoiiiiiiiiiii s 1-27
Procedural and Non-Procedural Elements............cccccccvuriiivinniniiiiiiiin, 1-27
Building an OCI APPLCAtION ...c.ccueuiueuiiiiiiiiiiicceeceeeicreese e 1-28

Overview of Oracle Data Provider for .NET (ODP.NET).........cccooiiiiiiiiiicne, 1-29
Using ODP.NET in a Simple Application.............oocrueieiiieieiiiiceieccccc s 1-29

Overview of Oracle Objects for OLE (OO40)cccooeviiiiriiiieieiceeeeeee s 1-30
O040 AUtomation SEIVETccuoviiiuiiiiiiiieec s 1-31
0040 ODbject MOdel.........ciiiiiiiiiiiiiiiii s 1-32

OraSeSsSIONcviiiiiiiiiic e 1-33
OFASEIVETocviiiiiiiicic e 1-33
OraDatabase...........cccoviiiiiiiiiiii s 1-34
OraDynaset.......oouiiiiiiiiiiii e 1-34
OraField ... 1-35
OraMetaData and OraMDAttribute ..o 1-35
OraParameters and OraParameter ... 1-35
OraParamAITaYcccooieiiiiiiiiiiie e 1-36
OraSQLSEML ..o 1-36
OTAAQ e 1-36
OLaAQMSG ..o 1-37
OraAQAGENT ..o 1-37
Support for Oracle LOB and Object Datatypes.........cccoveeiiiiciciincccceiceeeeenenenns 1-37
OraBLOB and OraCLOBcccccoviiiiiiiiii s 1-38
OFaBFILE ...t 1-38
Oracle Data CONEIOL........c.ccuiiiiiiiiiiiiccrcce e 1-39
Oracle Objects for OLE C++ Class Libraryccoceeieeiiiiicceecccececce s 1-39
Additional Sources of INformationccccceeiiiiiiiiiniiii 1-39

Choosing a Programming Environment...............cccccococooiiiiiiincce 1-40
Choosing Whether to Use OCI or a Precompiler...........oocouoiiiiiiiiiiinicceee 1-40
Using Built-In Packages and Librariesccccoooirieiiicciciiiicicecc s 1-41

Java Compared to PL/SQLccooiiiiiiiiccrrresr e 1-41

PL/SQL Is Optimized for Database Access...........cccovviviiininiiininiiiiiiiccens 1-42
PL/SQL Is Integrated with the Database...........cccccoorrnininnninininccccccccceeenes 1-42
Both Java and PL/SQL Have Object-Oriented Features............ccccoeeciiiinicicinincncnns 1-42
Java Is Used for Open Distributed Applicationsccocooueieiimiiiiiiieiicccee, 1-42

Partll Designing the Database

2 Selecting a Datatype

Summary of Oracle Built-In Datatypescccccoiiiiiiiiiiias 2-2
Representing Character Data..............ccccooiiiiiiiiiiiii s 2-8
Column Lengths for Single-Byte and Multibyte Character Sets...........cccccccevvviiiinnnnne. 2-9
Implicit Conversion Between CHAR/VARCHAR2 and NCHAR/NVARCHAR2.. 2-10
Comparison SEMANLICSccceiviiiiiiiiii e 2-10
Representing Numeric Data with Number and Floating-Point Datatypes........................... 2-11
Floating-Point Number System Concepts.........c.cococeueieiiiieiniiicicece 2-12
About Floating-Point FOrmatsccccoeviriiiiinnrr e 2-12
Representing Special Values with Native Floating-Point Formatsc.cccooiiiinnnnns 2-14
Behavior of Special Values for Native Floating-Point Datatypes.........c..cccccooeeruennnes 2-15
Rounding of Native Floating-Point Datatypes.........cccccoevvvrrrnninninnciciecceecennes 2-15
Comparison Operators for Native Floating-Point Datatypescccccooeviiriiiiiiienn, 2-16
Arithmetic Operators for Native Floating-Point Datatypes........c...ccocooviiciiiiiriieinnn. 2-16
Conversion Functions for Native Floating-Point Datatypes........c.cccccoevvvnnnecncncinnccnes 2-16
Exceptions for Native Floating-Point Datatypes.........ccccoooreiioiriii 2-17
Client Interfaces for Native Floating-Point Datatypescccocoevoiieiiiiiiiiciiiciccc 2-18
SQL Native Floating-Point Datatypescccccovvueririerninnnriiicccecseeeeeenenes 2-18

OCI Native Floating-Point Datatypes SQLT_BFLOAT and SQLT_BDOUBLE.......... 2-18

Native Floating-Point Datatypes Supported in Oracle OBJECT Types.............c......... 2-18
Pro*C/C++ Support for Native Floating-Point Datatypes..........cccccoeveininiciciicncnns 2-19

Storing Data Using the NUMBER Datatype........ccccooooiiiiiiiriiieicccce 2-19
Representing Date and Time Data ..o 2-20
Date FOrMaLtc.ooveviiicie s 2-21
Checking If Two DATE Values Refer to the Same Day ..o 2-21
Displaying the Current Date and Timecccooooeiiiiiiiiinic 2-21

Setting SYSDATE to a Constant Valte.........cccoovvvirrinieiniinnciiiccccccccccceeenenes 2-21

vi

Printing a Date with BC/AD NOtationccccccceuiiiiririiiiicrrnnceeee e 2-21

Time FOIMAL ..o s 2-22
Performing Date ArithmetiC........ccccceuiiriiiiiiiiiccrrccer e 2-22
Converting Between Datetime TyPes.......ccccooveiviiiiiiiiiniiiiiccns 2-23
Handling Time ZOMeSceueiiurieieiiieieieecci et 2-23
Importing and Exporting Datetime Typesccccccvvviiiiininiiiiiiiicccces 2-24

Establishing Year 2000 COMPUANCE..........ccovuiueiiiiiieieieeccie e 2-24
Oracle Server Year 2000 COmMPLANCEcccveviiiicieieiicie e 2-25
Centuries and the Year 2000cccoviiiviiiininiiiii e 2-25
Examples of The RR Date Format........cccoooiiiiiiiiiiiccecec 2-26
Examples of The CC Date Format.........c.cccoooiiioiiiiiniiiiieccc 2-27
Storing Dates in Character Datatypesccccoeveviiiinnninrrrrre e 2-27
Viewing Date Settings..........ccoceiiiiiiiiiiiiiiiii s 2-28
Altering Date Settings.ccceiiiiieieiiiicieiec s 2-29
Troubleshooting Y2K Problems in Applications..........ccccccueverereiirvnrninrenrneeenee 2-29

Representing Conditional Expressions as Data..............cccccoooviiiiinniiniii, 2-32
Representing Geographic Coordinate Datacccocoeiiiiiiiiiii 2-33
Representing Image, Audio, and Video Data.............cccooiiiiiiinnce, 2-33
Representing Searchable Text Data.............ccccocoeiiiiiiiiiii 2-34
Representing Large Amounts of Data ... 2-34
Using RAW and LONG RAW DatatyPesc.coviiiuiiiiiiiieccieieeneeeeneseeeeneenenenns 2-35
Addressing Rows Directly with the ROWID Datatype...........cccccooviinnnnnnnnnne, 2-36
Extended ROWID Format..........ccccooiiiiiiiiiiiiiiccene e 2-36
Different Forms of the ROWIDccccooiiiiiiiiniiiiicc e 2-37
ROWID PseudocOlUm.........ccocuviiiiiiiiiiiiiiiiiinc e 2-37

Internal ROWIDcccooiiiiiiniiiiiiiiicc s 2-37

External Character ROWIDcccocoviiiiiiiiiiiiiecnnns 2-37

External Binary ROWID.........c.oooiiiiiiii s 2-38

ROWID Migration and Compatibility ISSues...........cocooeueiiiiiiiiiiiiiiice, 2-38
Accessing Oracle Database Version 7 from an Oracle9i Client..........c.ccccccovuueeeeee. 2-39

Accessing an Oracle9i Database from a Client of Oracle Database Version7 2-39

Import and EXPOrt ... 2-39

ANSV/ISO, DB2, and SQL/DS Datatypesccccooiiiiniiiiiiiiiiicccncens 2-39
How Oracle Database Converts Datatypescccccccoiiiiiiiniiiiiiniiis 2-40
Datatype Conversion During ASSignments...........ccccoceueeveieiiiiiiiiiciiccc 2-41

Vii

viii

Datatype Conversion During Expression Evaluationccccoceceevnnnnninneccncicncnenns 2-43
Representing Dynamically Typed Datacccocoooiiiiiiiiiiiiccs 2-44
Representing XML Data ... 2-47

Maintaining Data Integrity Through Constraints

Overview of Integrity Constraints...............cccccooeiiviiiniiiiiiii 3-2
When to Enforce Business Rules with Integrity Constraintsccocooovoiiiiiiniinnnnnn. 3-2
Example of an Integrity Constraint for a Business Rule..........ccccooooiiinn, 3-2

When to Enforce Business Rules in Applicationsccccccoveiiiciiiceencceeeeccneenes 3-3
Creating Indexes for Use with Constraints...........cooouoiieiiiiiciic e, 3-3
When to Use NOT NULL Integrity Constraintscccoceeemeieiiiciciiiieceeecceeeeei 3-3
When to Use Default Column Values..........ccccoiiiiiiiiniiiiniiccccene 3-4
Setting Default Column Values ..o 3-5
Choosing a Table's Primary Keyccccocouiiiiiiiiiiicc 3-5
When to Use UNIQUE Key Integrity COnstraintsccocoeeerecceeceeneeeneneeeeceeerenes 3-6
Constraints On Views: for Performance, Not Data Integrityccoooevoieiiiiirnnennne, 3-7
Enforcing Referential Integrity with Constraints................ccocooeiii, 3-8
About Nulls and Foreign Keysccccooiiiiiiiii e 3-10
Defining Relationships Between Parent and Child Tables..............ccccoooriiiiiiin 3-10

No Constraints on the Foreign Keycccoooooiiiie 3-10

NOT NULL Constraint on the Foreign Keycccovvviiiniiiiiiiiiccceecenns 3-10

UNIQUE Constraint on the Foreign Keycccoooiiiiiiiiic 3-11

UNIQUE and NOT NULL Constraints on the Foreign Keycccccooooii. 3-11

Rules for Multiple FOREIGN KEY Constraintscccccccoeeueeriiiernerinrrnrnsreeecccneneees 3-11
Deferring Constraint Checks...........o.ooiiiiiiiii e 3-12
Guidelines for Deferring Constraint Checksc.oooriiiiiiiici 3-12

Select Appropriate Dataccccvveeiiiiirnnniiir e 3-12

Ensure Constraints Are Created Deferrable...........cccccooviiiiiiiiiii 3-12

Set All Constraints Deferred. ..o 3-13

Check the Commit (Optional)ccceeueirirniriiniririe e 3-13

Managing Constraints That Have Associated Indexes.............ccccooveiiiiiiiiiiiiins 3-14
Minimizing Space and Time Overhead for Indexes Associated with Constraints............ 3-14
Guidelines for Indexing Foreign Keysc.ccccoooiiiiiii, 3-14
About Referential Integrity in a Distributed Database.............ccccooviiiiiiiiiiii 3-15
When to Use CHECK Integrity Constraintscccccccevviiinnnininiiin 3-15

Restrictions on CHECK CONSEIAINESoouvvieeeieieeieieeeeeeeeee e e eeeeeeereeeeeeeeeesreseesneesenneeeas 3-16

Designing CHECK CONStraintsccccoeueieieiiiiiieiiicece s 3-16
Rules for Multiple CHECK CONSIraintscccccovviiiiiiiiiiiceecccneeeeeneneenenenenenenns 3-17
Choosing Between CHECK and NOT NULL Integrity Constraintscccoceevcevrunnnce. 3-17
Examples of Defining Integrity Constraintscccocooviiiiininini 3-17
Example: Defining Integrity Constraints with the CREATE TABLE Command.............. 3-18
Example: Defining Constraints with the ALTER TABLE Command...........c.cccooooevennne. 3-18
Privileges Required to Create Constraintsccccoeeioiiieiiiiiiciiicccecc 3-19
Naming Integrity CONStraintsccccccceviiiiiiiiiiiii s 3-19
Enabling and Disabling Integrity Constraintsccccooiiiiiiiie, 3-19
Why Disable CONStraints?cccooiieiiiiiiiicce e 3-20

About Exceptions to Integrity Constraints...........cccovviiinniiiinniiiiiins 3-20
Enabling CONStraints ..o 3-20
Creating Disabled Constraintscocooiioioiiiiciicceee 3-21
Enabling and Disabling Existing Integrity Constraintsccccccoeueceueuernennnnrnncncn. 3-21
Enabling Existing CONStraintscccoceoiiiioiiiiieceecc 3-21
Disabling Existing Constraintsccocooioieieieiiceiciccieee e 3-22

Tip: Using the Data Dictionary to Find Constraintsccccccevuevrvnnnnnncineccnee. 3-22
Guidelines for Enabling and Disabling Key Integrity Constraintsccccooovoiiieieinnee. 3-23
Fixing Constraint EXCEPHONSc.coiiiiiiiiiiiiiiiiiiiic s 3-23
Altering Integrity COnstraints............cccccocooiviiiiiiiiiiiii s 3-23
Renaming Integrity CONStraintscccoeeveiiiiiiiiii 3-24
Dropping Integrity Constraintsccoooiiiiiii 3-25
Managing FOREIGN KEY Integrity Constraints ..., 3-26
Datatypes and Names for Foreign Key Columns............cccoooiiiiiiiiniccce 3-26
Limit on Columns in Composite Foreign Keys..........ccccooooiiiiii 3-26
Foreign Key References Primary Key by Defaultccccooviiinniiinccce, 3-26
Privileges Required to Create FOREIGN KEY Integrity Constraints...........ccccooeeueieenne. 3-27
Choosing How Foreign Keys Enforce Referential Integrityccooooeiiiiiniine, 3-27
Viewing Definitions of Integrity Constraintscccccooiviiinini 3-28
Examples of Defining Integrity Constraints...........ccooooriiiiiieicccce 3-28
Example 1: Listing All of Your Accessible Constraintscccccoeeveieieieiiinicnnnns 3-29

Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints 3-30

Example 3: Listing Column Names that Constitute an Integrity Constraint...... 3-30

4 Selecting an Index Strategy

Guidelines for Application-Specific Indexes...............cccccoeiiiiiiiiiiis 4-2
Create Indexes After Inserting Table Datacccccceveuiiiiiiiieiiiiceeceeeeeenes 4-2

Switch Your Temporary Tablespace to Avoid Space Problems Creating Indexes 4-3

Index the Correct Tables and COlUMNS...........cccoeiiiiiiiiiiiiiiiiie 4-3

Limit the Number of Indexes for Each Table ..o 4-4

Choose the Order of Columns in Composite Indexes............cccoceuiieriiiiiiicieiiiccicne, 4-4

Gather Statistics to Make Index Usage More Accurate..........cccocovoiorieiiieiicieiiiccicne, 4-5

Drop Indexes That Are No Longer Required ..o 4-6
Privileges Required to Create an INdeXcooovriiiiiiiiiiiiicc 4-6
Creating Indexes: Basic EXamples ... 4-6
When to Use Domain INdeXesccccocovoviiiiriiiiiiiiiicc s 4-7
When to Use Function-Based Indexesccccccovininiiiiiiniiiiccs 4-8
Advantages of Function-Based IndeXescccoouoiiiiiiiiiic, 4-9
Examples of Function-Based INAEXESccoouviriiiniiiiininiicccccccecceeenena 4-10
Example: Function-Based Index for Case-Insensitive Searches..........c.c.cccooeuereirnrnanns 4-10
Example: Precomputing Arithmetic Expressions with a Function-Based Index....... 4-10
Example: Function-Based Index for Language-Dependent Sortingc.cccccceeeueeee 4-11
Restrictions for Function-Based Indexes ..o 4-11

5 How Oracle Database Processes SQL Statements

Overview of SQL Statement EXeCUtioNc.cccoiiiiiiiiiiiiiiiieec e 5-2
Identifying Extensions to SQL92 (FIPS Flagging)ccccceeiimeiiiiicieiiiicie e 5-2
Grouping Operations into Transactions............ccccoviiiniiiiiiii 5-4
Improving Transaction Performance............ccccooiiiioieiiieiiicccce 5-4
Committing TranSactions ...ttt 5-5
Rolling Back Transactionsccccccccuccciciiciiiieieiciecieiceieeeeeeieeeieeesene e eeseeseeeas 5-5
Defining Transaction SavepOintsc.oooirieieiicieieieicce e 5-6

An Example of COMMIT, SAVEPOINT, and ROLLBACKccccccevviinninniiiinnne 5-6
Privileges Required for Transaction Managementc.ccccecueeuiencneenccneeeeeeneennes 5-7
Ensuring Repeatable Reads with Read-Only Transactionsc.ccccoccnviiicinicicnnccnae. 5-7
Using Cursors within Applications ... 5-8
Declaring and Opening CUISOTScccccceucuiuiieieieiiiiieieiieieireieeeeeeeeeeeeeeee e eseesseesesens 5-9
Using a Cursor to Execute Statements Again............coooeiiiiiiiiiic 5-9
ClOSING CUISOLS ..ottt ettt sttt 5-10

CanCelling CUTSOTSc.ccucuiuimimiirieieieieirieieeeieteee ettt 5-10

Locking Data EXpLICItLYcoccooiiiiiiiiiiiiiii s 5-10
Choosing a Locking Strategycccccveeurieicririiiiiirrerreeeeese e 5-11
When to Lock with ROW SHARE and ROW EXCLUSIVE Modeccccooovuvivinnnnnn. 5-12

When to Lock with SHARE MoOde.........ccciiiiiiiiiiiiiiiinicccncccscsere e 5-12

When to Lock with SHARE ROW EXCLUSIVE Mode...........cccooviiinriinniiiiiinnnnn, 5-14

When to Lock in EXCLUSIVE Mode.........ccccooviviininininiiiiiiiiinincnns 5-15
Privileges Requiredccoooiiiiiii 5-15

Letting Oracle Database Control Table LocKing........cccccocoeueueiiiiicinnviiiinnccccerrecnee 5-15
Explicitly Acquiring ROW LOCKScooiuriiiiiiiiiccic s 5-16
ADOoUt USer LOCKS..........coiiiiiiiiiiiii s 5-17
When to Use USer LOCKS........covuviiuiiiiiiiiiiccici s 5-18
Example of @ User LOCK ..ot 5-18
Viewing and Monitoring LOCKS ..o 5-19
Using Serializable Transactions for Concurrency Control ..o, 5-19
How Serializable Transactions INnteract............cccccoovvviinininniiiiin, 5-21
Setting the Isolation Level of a Transaction...........cccceoiieioioiiceiicccc e 5-23
The INITRANS Parameter ..o 5-23
Referential Integrity and Serializable Transactions..........ccccoovoicieiiiicieiciiicccce 5-23
Using SELECT FOR UPDATEcccoeiiiiiniiiiccniiiresccse s 5-24

READ COMMITTED and SERIALIZABLE Isolation...........cccoeviviiiiniicniiceienccnens 5-25
Transaction Set CONSIStENCYc.cueveiiiiiiiiiiiiiiii e 5-25
Comparison of READ COMMITTED and SERIALIZABLE Transactions.................. 5-26
Choosing an Isolation Level for Transactions...........ccoceevuevevernnernnnninreecrceeceee 5-27
Application Tips for Transactions.........ccccoeeeieiiiicieiciice s 5-28
Autonomous Transactions.............ccccoooviiiniiiii s 5-28
Examples of Autonomous Transactionsc.ccccciocuiieeieiieeeeeeeeeeeneneeneeeeenenes 5-32
Entering a Buy Order ... 5-32
Example: Making a Bank Withdrawal ..o, 5-33
Defining Autonomous Transactions..........c.cceeuveeuerireriririrnrenirree e 5-36
Restrictions on Autonomous Transactions...........cceeeevveieiiiininieiciecc e 5-37
Resuming Execution After a Storage Error Condition ..., 5-38
What Operations Can Be Resumed After an Error Condition?...........ccccocoeiieciciccnnns 5-38
Limitations on Resuming Operations After an Error Condition..........c.cocooeeiiiiiiinnne. 5-38
Writing an Application to Handle Suspended Storage Allocation.............cccceueveinieiennnee. 5-39

Xi

Example of Resumable Storage AllOCAtionccccouvueuririririniriniririicrir e 5-39

6 Coding Dynamic SQL Statements

What Is Dynamic SQL?........ccccoiiiiiiiiiic s 6-2
Why Use Dynamic SQL?ccccooviiiiiiiiiiiiiiiic s 6-3
Executing DDL and SCL Statements in PL/SQL.......ccccccoooiiiiiiiiiiicccerreeceenes 6-3
Executing Dynamic QUETIES........cccciuiiiiiiiiiiiiicieiiieiceee s 6-4
Referencing Database Objects that Do Not Exist at Compilation..........c.cccooceieiiriennnnn. 6-4
Optimizing Execution Dynamicallyccocociiiiiiiiiiiiiicceceeeeeeeeeeeeeeeeeenes 6-5
Executing Dynamic PL/SQL BIOCKSc.ooiiiiiiiiiiie 6-6
Performing Dynamic Operations Using Invoker's Rightscccccooooiiiiiii, 6-7

A Dynamic SQL Scenario Using Native Dynamic SQLccccoviiiinniniine, 6-7
Sample DML Operation Using Native Dynamic SQL...........cccooeiiiiiiiiiiiccece, 6-8
Sample DDL Operation Using Native Dynamic SQLcccooeiiiiiiiiiiicceee, 6-9
Sample Single-Row Query Using Native Dynamic SQLcccccceceeiinnnininnniccnnes 6-9
Sample Multiple-Row Query Using Native Dynamic SQL.........c..cccooeiiiiiiiiiniiinen, 6-10
Choosing Between Native Dynamic SQL and the DBMS_SQL Package..............cccccceunee 6-11
Advantages of Native Dynamic SQL.......cccocooiiiiiiriiirirrceeccceeceeeeeee 6-11
Native Dynamic SQL is Easy to Use.......cccccoouoiiiiiiiiiiiiiiii 6-12

Native Dynamic SQL is Faster than DBMS_SQL.........ccccccooiiiiiiiiiiinns 6-14
Performance Tip: Using Bind Variables............cccccovvniinnnnnnnirccccccens 6-14

Native Dynamic SQL Supports User-Defined Types.........c.coccovuiinioriiniiciiiiic 6-15

Native Dynamic SQL Supports Fetching Into Records..........cccccovvviiiiiiniiniiniiinnnnnns 6-15
Advantages of the DBMS_SQL Packageccceueeiririiineiiiiicciiieecceeceeceneneenenes 6-16
DBMS_SQL is Supported in Client-Side Programs.............ooceiioiociiiiiiiciiinicciea, 6-16
DBMS_SQL Supports DESCRIBE ..o s 6-16
DBMS_SQL Supports SQL Statements Larger than 32KB...........ccccooiiiiniiniinincncnns 6-16
DBMS_SQL Lets You Reuse SQL Statements.........ccccueecvierieenieeniieniieeiieeieesee e eseenenea 6-16
Examples of DBMS_SQL Package Code and Native Dynamic SQL Code...........cccceuuee 6-17
Querying Using Dynamic SQL: EXamplecooiviiiniinncininiicciicccccccennes 6-17
Performing DML Using Dynamic SQL: Example.........ccccccooriiiiiiiiiccc 6-19
Performing DML with RETURNING Clause Using Dynamic SQL: Example........... 6-19

Using Dynamic SQL in Languages Other Than PL/SQL...........cccccococoviniiiiiniininic 6-20

Xii

7 Using Procedures and Packages

Overview of PL/SQL Program URitsccccccooiiiiiiiiiiiicnes 7-2
ANONYMOUS BIOCKS ... 7-2
Stored Program Units (Procedures, Functions, and Packages)ccccccccovvevrvnrncncnence. 7-4
Naming Procedures and FUNCtIONSccooooiiiiiiiii 7-5
Parameters for Procedures and FUNCHONS...........ccccveiiiiiiiiiiiiiiccc, 7-5
Parameter MOdesccccovviviiiiniiininiiiiii s 7-6
Parameter Datatypes ... 7-7
%TYPE and %ROWTYPE Attributes_ ..o, 7-7
Tables and Records ... 7-8
Default Parameter Valuescccccovviiiiiiiiiiiiiiicccncas 7-9
Creating Stored Procedures and FUNCHONSccccccvuiuiiriiieininincrcecrcecc e 7-9
Privileges to Create Procedures and Functionsccccooviiniiiiic 7-10
Altering Stored Procedures and FUNCtioNnsccooovoiiiiiiciicc, 7-11
Dropping Procedures and FUNCHONScccccccoeuciiiiiiiiininiiiicrrcreee e 7-11
Privileges to Drop Procedures and Functions ..o 7-12
External Procedures ... 7-12
PL/SQL PACKAZESvveeiiiiiieeereer ettt 7-12
Example of a PL/SQL Package Specification and Bodyccccoeeeiiiiinnini 7-13
PL/SQL Object Size Limitation........c.cocceviiiiiiiiiiniiiiiiieciciicsccese s 7-14
Size Limitation by Version........ccviiiiniiiiininiiinnicccccennns 7-14
Creating Packagesccocueuoiiiiciiiiicce 7-15
Creating Packaged ODbjects ..o 7-15
Privileges to Create or Drop Packagescccccoceeeiiiicnnniinnrrnceeneeee 7-16
Naming Packages and Package Objectsc.ccoeeiiiiiiiiiiiiiiicec, 7-16
Package Invalidations and Session Stateccccoooiiiiiiiciecc e, 7-16
Packages Supplied With Oracle Databaseccccccoeiiiiiiiniinicncreeceene. 7-17
Overview of Bulk Bindsccccceiiiiiiiiiiiiiiiiiiin 7-17
When to Use Bulk Binds.........ccccccovviiiniiiiiiiiiiics 7-18
DML Statements that Reference Collections............ccovrurviviiiiieiiniiiicceiinns 7-18
SELECT Statements that Reference Collections.............cccceviieinieieiiiiieeiiicci 7-19
FOR Loops that Reference Collections and the Returning Into Clause................ 7-19
TTIZGETS oivviiiiicic e 7-20
Hiding PL/SQL Code with the PL/SQL Wrapperccccocviiiiiniiiiiieiceeeieinns 7-20

Compiling PL/SQL Procedures for Native Executionccccocovvnniniiiiinnniin, 7-21

xiii

Xiv

Remote DePendencies ..ottt 7-21

TIMEStAMPS. c.eitiitt et 7-21
Disadvantages of the Timestamp Modelc.ccoovviiniinniinniiccccenes 7-22
SIENALULES ..o 7-23
When Does a Signature Change?coooiriiiicc e 7-25

MOAES ...oviiii e 7-25

Default Parameter Values ... 7-26

Examples of Changing Procedure Signatures..............cccooeeioiiiinioiinicnicccce 7-26
Controlling Remote Dependenciesccooeernnirnninninininnncceieeccceessee e 7-28
Dependency ResOIUtioN........c.couiiuiiiiiiciecic s 7-29
Suggestions for Managing Dependencies..............cccoooireiniiiiciiiiiicicecccc 7-29

Cursor Variables ... 7-30
Declaring and Opening Cursor Variables ... 7-31
Examples of Cursor Variables.............cooiii 7-31
FetChing Datac.cceiiiiiiiiccicecccccctee e 7-31
Implementing Variant RecOrds ... 7-32
Handling PL/SQL Compile-Time EIrorsccccocoviiiiniiiniiiiiiiccccnna 7-33
Handling Run-Time PL/SQL EXTOrsScccooiiiiiiiiiiiiiiiicc s 7-35
Declaring Exceptions and Exception Handling Routinesc.cccooouoirniiiiiciiiniccnnn. 7-36
Unhandled EXCEPHONSc.oviiiiiiiiii e 7-38
Handling Errors in Distributed QUETIEScccouruiiiiririnirriirrecccccceceeceeeenenes 7-38
Handling Errors in Remote Procedures ... 7-38
Debugging Stored Procedures..............ccoouviiiiiiiiiiiiii e 7-40
Calling Stored Procedures...............cccoooiiiiiiiiiniiiii e 7-43
A Procedure or Trigger Calling Another Procedure.............ccocooiiiiiiiii, 7-43
Interactively Calling Procedures From Oracle Database Toolscccccocoeviiuiinnnns 7-44

Calling Procedures within 3GL Applicationsccccccevvvrnnnininciiiiicccccenenes 7-45

Name Resolution When Calling Procedures............cccouoirueieiiiiciiiicciceiccenei 7-45
Privileges Required to Execute a Procedure ..o 7-45
Specifying Values for Procedure Argumentscceeeeereveininiincccncicnccccceenenas 7-46
Calling Remote Procedures ..o 7-47
Remote Procedure Calls and Parameter Valuesccccooooiiiiiiciiiiiccicc 7-47
Referencing Remote ODJECtS ..o 7-48
Synonyms for Procedures and Packagescccorrurieiiiiiiiiiicicc 7-49
Calling Stored Functions from SQL EXPressions.............ccccooeiiuiiiiiiiiiiiiiiccccnns 7-50

Using PL/SQL FUNCHONSooviiiiiiieciiccccccccccsecsceciesse e ene e nenes 7-50

Syntax for SQL Calling a PL/SQL FUNCHON.........cccoiiiiiiiiiiiicicciccens 7-51
Naming COnVENtioNSccccviiiiiiiiiiii s 7-51
Name Precedencecovvviiiiiiiicr e 7-52
Example of Calling a PL/SQL Function from SQL...........cccoooiiiiiiiiiii 7-52
ATGUIMENES ..o 7-53
Using Default Values ... 7-53
PrivIleges .c.oueiiiiiiiiiiici 7-54
Requirements for Calling PL/SQL Functions from SQL Expressions............cccccceeuvurennee. 7-54
Controlling Side Effects ... 7-55
RESIICIONS ..o e 7-55
Declaring a FUNCHOMNc.cciiiiiiiiiiiici e 7-56
Parallel Query and Parallel DML..........cccoooiiiiiiiiicec 7-57
PRAGMA RESTRICT_REFERENCES - for Backward Compatibility.............ccccc....... 7-59
Using the Keyword TRUSTccocoiiiiiiiiiccccceeeeee e 7-61
Differences between Static and Dynamic SQL Statements.ccccoovviniiinnnnne. 7-62
Overloading Packaged PL/SQL Functions...........ccccccevvvvviiiininninnicne, 7-63

Serially Reusable PL/SQL Packages..........ccccoeiuiiirririiiiirrircccreeceeeeeeeeeeeesee e 7-63
Package States ... 7-63
Why Serially Reusable Packages? ..o 7-64
Syntax of Serially Reusable Packages...........ccccoevuvurirnininininienrnirceeeeecec e 7-64
Semantics of Serially Reusable Packages...........cccccoceviiiiininnniniiiniii, 7-65
Examples of Serially Reusable Packages............cccocoiiiiiiiiiiiininiiiin, 7-65
Example 1: How Package Variables Act Across Call Boundaries......................... 7-65
Example 2: How Package Variables Act Across Call Boundaries......................... 7-66
Example 3: Open Cursors in Serially Reusable Packages at Call Boundaries..... 7-68
Returning Large Amounts of Data from a Function................ccccccocooviiiiniinine, 7-69
Coding Your Own Aggregate FUNctionscccocoviiiiiniiiiiic 7-71

Calling External Procedures

Overview of Multi-Language Programs.............cccooiiiiiiiiiiiiiccennes 8-2
What Is an External Procedure?ccocoiiiiiiiiiiiiiccccnsie e 8-3
Overview of The Call Specification for External Procedures............cccccocecvrivinicininninnennnne. 8-4
Loading External Procedures...............ccccoooiiiiiiiiiiiiiiii s 8-4

Loading Java Class Methods..........cccccooiviiiiiiiiiiiiiies 8-5

XV

Loading External C ProCedures.........c.ccccvuiiiiiiriiiiiiiiriricreeceeereeeee s 8-5

Publishing External Procedures...............ccoooiiiiiiiiiiiiiiccenni 8-10
The AS LANGUAGE Clause for Java Class Methods.........cccceeveeininienienenienieieeeieeeeevene 8-12
The AS LANGUAGE Clause for External C Procedures...........cccccoovvvviiniiiinininniinnnn, 8-12

LIBRARY ..o 8-12
INAME ..o 8-12
LANGUAGEcooiiiiiiric s 8-12
CALLING STANDARD......cocoiiiiiiiiieiii s 8-12
WITH CONTEXT ..ottt 8-13
PARAMETERS ..ottt 8-13
AGENT IN L. 8-13

Publishing Java Class Methods ... 8-13

Publishing External C Procedures ..o 8-14

Locations of Call Specifications..............ccocoiiiiiiiiiii 8-14

Example: Locating a Call Specification in a PL/SQL Package Bodycccccccvvuenecee 8-15
Example: Locating a Call Specification in an Object Type Specification..................... 8-16
Example: Locating a Call Specification in an Object Type Bodyc.ccccooeiieerniii 8-16

Passing Parameters to External C Procedures with Call Specifications...................cccc..... 8-18
Specifying Datatypes.......c.ccouiiiiiiiic 8-19
External Datatype Mappingscccouceiiiiiinicieiicie e 8-21
BY VALUE/REFERENCE for IN and IN OUT Parameter Modes.........ccccccooueuiriiincnnnnn. 8-23
The PARAMETERS ClaUSEcocviimimiiiiiiiiiiiciici s 8-24
Overriding Default Datatype Mapping........ccccooiiueieiiiiiieiiiicciceece e 8-25
SPECIfYINg PrOPETtiesc.cccvuiiiiiiiiiiriiiiicrrrceer ettt 8-25

INDICATOR ..ottt 8-27
LENGTH and MAXLENc.ccoiiiiiiiiiicen s 8-27
CHARSETID and CHARSETFORMcccoouiiiiiiiiiiiiceecnsnass 8-28
Repositioning Parameters ..o 8-29
USING SELF ..ot 8-29
Passing Parameters by Reference..........c.oouviiiiiiiiiinicicciccccccccecceeeenenes 8-32
WITH CONTEXT ..ot 8-33
Inter-Language Parameter Mode Mappingscccccoceueiiiiiomicieiiiieieecceeicieie 8-33

Executing External Procedures with the CALL Statement...............ccccooviiiniininiiinnnn, 8-33

Preconditions for External Procedures...........ccccoooviiiiniiiiininiiiincn 8-34
Privileges of External Procedurescccooiiiiiiiiiiiiiccc s 8-35

XVi

Managing Permissions ... 8-35

Creating Synonyms for External Proceduresccoomeiiioiiiiiniccecccce, 8-35

CALL Statement SYNtaX........cccoviiiiiiiiiiiiii s 8-36
Calling Java Class Methods.........ccccccrurieiiiiicniriiicrrcreee e 8-36
How the Database Server Calls External C Procedures..........cccccooiiiiniiiciciniicieecne, 8-37
Handling Errors and Exceptions in Multi-Language Programsccccccoccoeiniiiininnnnne. 8-38
Generic Compile Time Call specification EXTOrs.........cccooiruiieiiiiciciiiiiceecc e 8-38

C Exception Handling.........c.cooiiiiiiiic e 8-38
Using Service Procedures with External C Procedures................cccooviinnniiinniininnnnnn. 8-38
OCIExtProc AllocCallMemOTYcooieueiiiicieieiicic et 8-38
OCIEXtProcRAISEEXCPcvoviieiiiiiiii e 8-44
OCIExtProcRaise EXCPWItRIMSGc.cucuiiiiiiiiiiiiiciiicrcicececcreee e 8-46

Doing Callbacks with External C Proceduresc.cccoovinininiinic, 8-47
OCIEXtPTOCGELENYV ...ttt 8-47

Object Support for OCI Callbacks........c.ccueuiuiuiuiiiiiiiiciiiiciceieicceee s 8-48
Restrictions on Callbacks............ccccciiiiiiiiiiiiiiiii s 8-49
Debugging External Procedures...........ccocouoiiiiiioiiciciciiicieeec s 8-50
Using Package DEBUG_EXTPROCcccccooiviiiiiiiniiiiiiciccccenns 8-51

Demo Programi.........cooiiiiiiiiiii s 8-51
Guidelines for External C Proceduresccccovviiiiinininiiininicnccccncns 8-51
Restrictions on External C Procedures ..o 8-53

Partlll The Active Database

9 Using Triggers

Designing TriGZers ... 9-2
Creating TriGEeTSccooiiviiiii e 9-2
TYPes Of TIIZGOTSououmiiiicictct s 9-3
Overview 0Of System EVENTSccccocoiuiiiiiiiiiiiirciicree e 9-4
Getting the Attributes of System Events.........ccccooooiiiiiiiii 9-4
Naming TIIGZETScoouiieiiiiiiee s 9-4
When Is the Trigger FIired? ... 9-5

Do Import and SQL*Loader Fire Triggers?cocoovriiioiiiinieiiicieecccieee e, 9-5

How Column Lists Affect UPDATE Triggersccoooeoiirieiiiicieiiicicecceeeece 9-6
Controlling When a Trigger Is Fired (BEFORE and AFTER Options)cccccovvevvuneccaee. 9-6

XVii

xviii

Ordering Of TIIGEETScccuiuiiiuiiirieieeicieeeeie ettt eaes 9-7

Modifying Complex Views (INSTEAD OF Triggers).......ccccesirumueieiiicieiiiinieeieecieeeeeie. 9-8
Views that Require INSTEAD OF TTigGETScccccvoiuimimimimiiimiicriiciecrciceiceeneeeeienenenennes 9-9
INSTEAD OF Trigger EXamplecccccooviiiiiiicrnece e 9-10
Object Views and INSTEAD OF Triggers........cccooovueuiiiiiinieieiiiicieieiceie e 9-11
Triggers on Nested Table View COIUMNS.........ccocouviririiiiiinnniiini e 9-12

Firing Triggers One or Many Times (FOR EACH ROW Option)cccooveeueieiiirieieiinnnn. 9-13

Firing Triggers Based on Conditions (WHEN Clause)cccccoeoiviiiiiiiceiiiiccieice, 9-14

Coding the Trigger Bodycccccoiiiiiiiiiiiii e 9-15
Example: Monitoring Logons with a Trigger.........cccooviiiiiiiiciiieiiccccce 9-15
Example: Calling a Java Procedure from a Trigger.........cccccoovriiiiiicciiiiicicicne 9-16

Accessing Column Values in ROW TTigZersccccovueiiiriiirnininnniiiiiccccccceeeeneennes 9-17
Example: Modifying LOB Columns with a Triggerccccoovireiiiiiiiiiicicc 9-18
INSTEAD OF Triggers on Nested Table View Colummns...........cccocovvvivniiinnnininininnnns 9-18
Avoiding Name Conflicts with Triggers (REFERENCING Option)c.cccceeeieueee 9-19
Detecting the DML Operation That Fired a Trigger........ccccccooovriioioiiiiiiiciicce 9-19
Error Conditions and Exceptions in the Trigger Bodyccccooomiiiiiiiiii 9-20

Triggers and Handling Remote EXCEPLIONSccccoueueiiiiiiiiinirininirinrircccccccccceeenenes 9-20

Restrictions on Creating TTigZersooiiviiiiiiiiiiiiiciec 9-21

Who Is the Trigger USEI? ..o 9-25

Privileges Needed to Work with TTigZerscccccooeeiiiiiinirninrncrinrccecececcceeenenes 9-26

Compiling THIGGETSccoiiiiiiiiiiiiii s 9-26
Dependencies for TTigZers ...t 9-27
Recompiling TTIGEETScciueuiiiiiiiiiiicieicicrrree et 9-27

Modifying TIIGGETSccccoviiiiiiiiiiiiiii 9-28
Debugging TIIGZETSc.cveviirieieiiiieeie ettt 9-28

Enabling and Disabling Triggers............ccccoeiviniiiiininiiiiiiiicc e 9-28
ENabling TTiGZEISccooriiiiiecieiecic et 9-28
Disabling TTiGZEIScoovueiiiiiiieieiicicie et 9-29

Viewing Information About Triggersccccccoiiiiiiiiiiiiniii 9-29

Examples of Trigger Applicationsccoviiiiiiiiii 9-31

Auditing with Triggers: Example ..o 9-32
Integrity Constraints and Triggers: EXamplesccccoovvrirnninininnininiiiccccicnnes 9-37
Referential Integrity Using Triggers ...t 9-38

Foreign Key Trigger for Child Tablecccoooiiiii e 9-39

10

11

UPDATE and DELETE RESTRICT Trigger for Parent Tableccccccecveeucacees 9-40

UPDATE and DELETE SET NULL Triggers for Parent Table: Example 9-41
DELETE Cascade Trigger for Parent Table: Example..........cccooevvinncinniinnnnce. 9-41
UPDATE Cascade Trigger for Parent Table: Exampleccccocooeiiiiiiincnccnns 9-42
Trigger for Complex Check Constraints: Examplecccccccovvviininiininniinn, 9-43
Complex Security Authorizations and Triggers: Exampleccccccccveinnnnnnnenee. 9-45
Transparent Event Logging and Triggers.........ccccovviiiiiiiniiiiiinc, 9-46
Derived Column Values and Triggers: Examplecccccoovvviiinnininnniniinnn, 9-46
Building Complex Updatable Views Using Triggers: Example.........ccccccccovviinnnnce. 9-47
Tracking System Events Using Trig@erscccovviiiiniiininiiiiiiiccs 9-49
Fine-Grained Access Control Using Triggers: Example........ccccccoovvnniininnnnne. 9-49
CALL SYNEAX ...ttt 9-50
Responding to System Events through Triggers ..o, 9-50
Working With System Events
Event Attribute FUNCHONSccocoiiiiiiii e 10-2
List of Database EVENts...........ccccccooiiiiiiiiiiiiiicc e 10-7
System EVENtS ..o 10-7
CLENE EVEILS ...t 10-8
Using the Publish-Subscribe Model for Applications
Introduction to Publish-Subscribe.............cccccccoiiiiiiiiiii 11-2
Publish-Subscribe Architecture................cccccoiiiiiiiiiiiiiiiic e 11-3
Publish-Subscribe CONCEPLS.........ccooeiriiiriciriiicceeeeeee e 11-3
Examples of a Publish-Subscribe Mechanism................cccooooii, 11-6

Part IV Developing Specialized Applications

12

Using Regular Expressions With Oracle Database
What are Regular EXpressions? ..o s 12-2
Oracle Database Regular Expression Support ... 12-2
Oracle Database SQL Functions for Regular Expressions..............ccccococviniiiniiiinnnne. 12-2
Metacharacters Supported in Regular EXpressions ..., 12-4
Constructing Regular EXpressions ... 12-5

Xix

Basic String Matching with Regular EXPressionsccceeeeeiieinciiniinicciciceccecenenes 12-5
Regular Expression Operations on SUbeXpressionsccoceeeeccieieicucieieiecicie e, 12-5
Regular Expression Operator and Metacharacter Usage..........cccocoeeiiivcmiiiinicccinnencnns 12-5

13 Developing Web Applications with PL/SQL

PL/SQL Web APPLICAtIONSccoviiiiiiiiiiiciicicne et 13-2
PL/SQL GateWAY ...ttt 13-3
Configuring mod_plSql.........coiiii e 13-4
Uploading and Downloading Files With PL/SQL Gatewayccccccvreeenciinccccuencnnnnn 13-4
Uploading Files to the Database...........ccccoooiueiiiiiiiiiiiiiec e, 13-4
Downloading Files From the Databasecccoouiiiiiioiiiiiccc 13-5
Custom Authentication With PL/SQL Gatewayccccccevvuviririrnneninirciiccccccenenenes 13-5
PL/SQL WeD TOOIKILc..ceiiiiiiiieeeeet ettt sttt ettt et et ebe e eeeenen 13-6
Generating HTML Output from PL/SQL..........cccocoooiiiiiiics 13-8
Passing Parameters to a PL/SQL Web Application.............cccccccooviiiiiiniiiniiiicn, 13-9
Passing List and Dropdown List Parameters from an HTML Form..........cccooviiinnnnns 13-9
Passing Radio Button and Checkbox Parameters from an HTML Form.......................... 13-10
Passing Entry Field Parameters from an HTML FOrm.........c.ccccccevuiiinnninnnnnncccees 13-10
Passing Hidden Parameters from an HTML Formu........cccoooiiiiiiiiicce, 13-12
Uploading a File from an HTML FOrmccccooiiiiiiiiiccc 13-13
Submitting a Completed HTML FOIIMc.ccouiiiiiiiiiiiiiiiicrcceees s 13-13
Handling Missing Input from an HTML FOrmccccooiiiiiiicccce, 13-13
Maintaining State Information Between Web Pages...........cccoooooiiiiiii, 13-14
Performing Network Operations within PL/SQL Stored Procedures.................cccceueuennen. 13-15
Sending E-Mail from PL/SQLccccccoiiiiiiiiiiiiiiiiiccccsne 13-15
Getting a Host Name or Address from PL/SQL ..o 13-16
Working with TCP/IP Connections from PL/SQL.......ccccccoeiiiniiinniiccccccnes 13-16
Retrieving the Contents of an HTTP URL from PL/SQL........cccccccovvinnnnnnninniine 13-16
Working with Tables, Image Maps, Cookies, and CGI Variables from PL/SQL 13-19
Embedding PL/SQL Code in Web Pages (PL/SQL Server Pages).............cccevirininiinnns 13-19
Choosing a Software Configuration...........ccoeoiiiici 13-20
Choosing Between PSP and the PL/SQL Web Toolkit..........cccccoviiiiiiniiiiinnes 13-20

How PSP Relates to Other Scripting SOIUIONScccccoeeeeiiiiiiiiirrrrceeccaes 13-20
Writing the Code and Content for the PL/SQL Server Page..........ccccoooviiiiiiciiininnnan. 13-21
The Format of the PSP File ..o 13-21

XX

14

15

Syntax of PL/SQL Server Page EIementsccccccccueuiiciiiicniiiceececceeieeieneenes 13-27

Page DITeCtiVecoovvieiiiiiiicicc 13-27
Procedure DIrective ... 13-27
Parameter DIreCtiVe ..ot 13-28
INnclude DITeCHVEcuiuiiiiciiici e 13-28
Declaration BIOCK..........cccouiiiiiiiiiiiiiii e 13-28

Code Block (Scriptlet)cccciiiiiiiiiiiiiiiiiiii s 13-28
EXPression BLOCK..........c.ouiiiiiicic e 13-29
Loading the PL/SQL Server Page into the Database as a Stored Procedure................... 13-29
Running a PL/SQL Server Page Through a URL...........ccooiiiiiiiii 13-30
Sample PSP URLS ..ottt 13-30
Examples of PL/SQL Server Pages..........cccoceucuiuiuiunieiiiiiiieiieieieicicieieeieeeeeeeeseseeseeneneeeneenes 13-31
Sample Tableooouriiiii e 13-31
Dumping the Sample Tablecoooiiiiii 13-32
Printing the Sample Table using a LOOPcccceiiiiiiiiiiicccccceceeeeeeees 13-32
Allowing a User Selection. ... 13-33

Sample HTML Form to Call a PL/SQL Server Page.........c.cccooceueinrniiiiicicieece, 13-35
Debugging PL/SQL Server Page Problems............ccccccccuiuiueieiiieninninierresrreeseeecseenene 13-38
Putting an Application using PL/SQL Server Pages into Productioncccccceuvuncee. 13-39
Enabling PL/SQL Web Applications for XMLccccoiiiiiiiiiiiccees 13-41

Porting Non-Oracle Applications to Oracle Database 10g
Performing Natural Joins and Inner JOins..........cccoccooiiiiiiiiiicccccces 14-2
Migrating a Schema and Data from Another Database System...............ccccccccoonniiinnn. 14-2
Performing Several Comparisons within a Query............ccccoceviviiiinniiiii, 14-2
Using Flashback Features

Overview of Flashback Features..............cccccocooiiiiiiiiiiis 15-2
Application Development FEatures............coooeuoiiiiiiiiiiciiccc 15-2
Database Administration Features............ccocooovviiiiiiiiiiiicnes 15-3
Database Administration Tasks Before Using Flashback Featurescccccooninnnn. 15-4
Using Flashback Query (SELECT ... AS OF)cccccoiiiiiiiiciicicieccciseic e 15-5
Examining Past Data: EXampleccococoviiiiiiiiini e 15-6
Tips for Using Flashback QUEeTYc.ccouoiiiiiiiiii s 15-6
Using the DBMS_FLASHBACK Package............cccccovviniininiiiniiiiiicccccns 15-7

XXi

16

XXii

Using ORA_ROWSCN ..o s 15-9

Using Flashback Version QUery ... s 15-10
Using Flashback Transaction QUery ... 15-12
Flashback Transaction Query and Flashback Version Query: Example..........c.c.cccc........ 15-13
Flashback TiPscccoouviiiiiiiiiiiiiiiiiiiii s 15-15
Flashback Tips — PErfOormanceccccccccvueucirieieiririiicrrereseeceeeeeeeeeeees s 15-15
Flashback Tips — General...........ccocoioiiiiiiiiiiic e 15-16
Using Oracle XA with Transaction Monitors

X/Open Distributed Transaction Processing (DTP)cccccoooiiiiniiniiiiiiccns 16-2
Required Public Information..............ooii e 16-4

XA and the Two-Phase Commit Protocol ..o 16-5
Transaction Processing Monitors (TPMS) ... 16-5
Support for Dynamic and Static Registration..............ccccoooiiiiiii 16-5
Oracle XA Library Interface Subroutinescccococoiviiiiiiiniiniis 16-6
XA Library SUDIOULINESc.oviviiiiieciece e 16-6
Extensions to the XA INterface........ccooovvviiiiiiiniiiniiiic 16-7
Developing and Installing Applications That Use the XA Librariesccccoviiinnne, 16-8
Responsibilities of the DBA or System Administrator...........cccceoiioioiiiiiiiicciee, 16-8
Responsibilities of the Application Developer ..o, 16-9
Defining the Xa_open String...........cccccciiiriiiiiiie e ees 16-9
Syntax of the xa_open String ... 16-10
Required Fields ... 16-11
Optional FIELAS......c.coouiiiiiiiiiiiiiciccerce st 16-12
Interfacing XA with Precompilers and OCISs.........c.cccoiiiiiiiiieiicc 16-16
Using Precompilers with the Oracle XA Library ... 16-16

Using Precompilers with the Default Database...........ccoooioiiiiinciiiiinnccene 16-16

Using Precompilers with a Named Database...........c.cccooooiiiiiiiiii 16-17

Using OCI with the Oracle XA Libraryccccoooieiiiiiiciniiicicece e 16-18
Transaction Control UsINg XAcccccciiiiiiiiincr e 16-19
Examples of Precompiler Applications...........cooeeueieiiiiicieiiiiicieceeccei 16-20
Migrating Precompiler or OCI Applications to TPM Applicationsccccooeerrieiennnes 16-21

XA Library Thread Safety.........ccocovvirirnrnrcrnrr s 16-23
Specifying Threading in the Open String ..o 16-23
Restrictions on Threading in XA ..o 16-23

Troubleshooting XA Applications...........cccoooiiiiiiiiiiis 16-24

XA TTACE FALES ... 16-24
The xa_open string DDFL............ccccciiiiiiiiiiicceeceeeeeee e 16-24

Trace File LOCAHONS.......ccoviiiiiiiiiciiiic e 16-25

Trace File EXamPLES..........coocriiiiiiiciii s 16-25
In-Doubt or Pending Transactions...........c.ccccccueucuenurieiiieicerinieenieeeesseeseeees e 16-26
Oracle Database SYS Account Tables ... 16-26

XA Issues and Restrictions..............ccccovviiiiiiiiiiiiiiiii 16-27
Changes to Oracle XA SUPPOTIt ... 16-32
XA Changes from Release 8.0 to Release 8.1ccoooiiiiioiiiiiiiiiiccccc 16-32

XA Changes from Release 7.3 to Release 8.0c.ccoovirieiiiiiiiciiicccc e 16-32
Session Caching Is No Longer Needed..........ccocoevieuiniiininincinnrceccceceeee 16-33
Dynamic Registration Is Supported ..o, 16-33
Loosely Coupled Transaction Branches Are Supportedcccooeiiiiiin, 16-33
SQLLIB Is Not Needed for OCI Applications.........ccceueueurueueericireririninierrreceecreeeene 16-34

No Installation Script Is Needed to Run XAcccoooiiiiiii 16-34

XA Library Use with Oracle Real Application Clusters Option on All Platforms .. 16-34
Transaction Recovery for Oracle Real Application Clusters Has Been Improved .. 16-34
Both Global and Local Transactions Are Possible...........cccccoouiiiiiiiii 16-34
The xa_open String Has Been Modified...........ccooiiiiiiiiiiiiiiiicns 16-35

Index

XXiii

XXiv

Send Us Your Comments

Oracle Database Application Developer's Guide - Fundamentals, 10g Release 1 (10.1)
Part No. B10795-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXV

XXVi

Audience

Preface

The Oracle Database Application Developer’s Guide - Fundamentals describes basic
application development features of Oracle Database 10g. Information in this guide
applies to features that work the same on all supported platforms, and does not
include system-specific information.

This preface contains these topics:
= Audience

= Organization

= Related Documentation

= Conventions

s Documentation Accessibility

Oracle Database Application Developer’s Guide - Fundamentals is intended for
programmers developing new applications or converting existing applications to
run in the Oracle Database environment. This book will also be valuable to systems
analysts, project managers, and others interested in the development of database
applications.

This guide assumes that you have a working knowledge of application
programming, and that you are familiar with the use of Structured Query Language
(SQL) to access information in relational database systems.

Certain sections of this guide also assume a knowledge of the basic concepts of
object-oriented programming.

XXVii

XXViii

Duties of an Application Developer
Activities that are typically required of an application developer include:

Programming in SQL. Your primary source of information for this is the Oracle
Database SQL Reference. In the Oracle Data Warehousing Guide,you can find
information about advanced query techniques, to perform analysis and retrieve
data in a single query,

Interfacing to SQL through other languages, such as PL/SQL, Java, or C/C++.
Sources of information about these other languages include:

s PL/SQL User’s Guide and Reference

» PL/SQL Packages and Types Reference

» Oracle Database Java Developer’s Guide
» Pro*C/C++ Programmer’s Guide

» Oracle Call Interface Programmer’s Guide and Oracle C++ Call Interface
Programmer’s Guide

» Oracle Objects for OLE C++ Class Library Developer’s Guide
» Oracle COM Automation Feature Developer’s Guide

Setting up interactions and mappings between multiple language
environments, as described in "Calling External Procedures" on page 8-1.

Working with schema objects. You might design part or all of a schema, and
write code to fit into an existing schema. You can get full details in Oracle
Database Administrator’s Guide.

Interfacing with the database administrator to make sure that the schema can be
backed up and restored, for example after a system failure or when moving
between a staging machine and a production machine.

Building application logic into the database itself, in the form of stored
procedures, constraints, and triggers, to allow multiple applications to reuse
application logic and code that checks and cleans up errors. For information on
these database features, see "Using Procedures and Packages" on page 7-1,
"Maintaining Data Integrity Through Constraints" on page 3-1, and "Using
Triggers" on page 9-1.

Some degree of performance tuning. The database administrator might help
here. You can find more information in PL/SQL User’s Guide and Reference,
PL/SQL Packages and Types Reference, and Oracle Database Performance Tuning
Guide.

= Some amount of database administration, if you need to maintain your own
development or test system. You can learn about administration in the Oracle
Database Administrator’s Guide.

» Debugging and interpreting error messages. See "Related Documentation” on
page xxxi.

= Making your application available over the network, particularly over the
Internet or company intranet. You can get an overview in "Developing Web
Applications with PL/SQL" on page 13-1, and full details covering various
languages and technologies in the Oracle Application Server documentation.

= Designing the class structure and choosing object-oriented methodologies, if
your application is object-oriented. For more information, see Oracle Database
Application Developer’s Guide - Object-Relational Features, PL/SQL User’s Guide and
Reference, and Oracle Database Java Developer’s Guide.

Organization

This document contains:

Part I: Introduction

This part introduces several ways that you can write Oracle Database applications.
You might need to use more than one language or development environment for a
single application. Some database features are only supported by, or are easier to
access from, certain languages.

Chapter 1, "Programmatic Environments"

This chapter outlines the strengths of the languages, development environments,
and APIs that Oracle Database provides.

Part ll: Designing the Database

Before you develop an application, you need to plan the characteristics of the
associated database. You must choose all the pieces that go into the database, and
how they are put together. Good database design helps ensure good performance
and scalability, and reduces the amount of application logic you code by making the
database responsible for things like error checking and fast data access.

XXiX

XXX

Chapter 2, "Selecting a Datatype"

This chapter explains how to represent your business data in the database. The
datatypes include fixed- and variable-length character strings, numeric data, dates,
raw binary data, and row identifiers (ROWIDs).

Chapter 3, "Maintaining Data Integrity Through Constraints"

This chapter explains how to use constraints to move error-checking logic out of
your application and into the database.

Chapter 4, "Selecting an Index Strategy"
This chapter explains how to choose the best indexing strategy for your application.

Chapter 5, "How Oracle Database Processes SQL Statements"

This chapter explains SQL topics such as commits, cursors, and locking that you can
take advantage of in your applications.

Chapter 6, "Coding Dynamic SQL Statements"

This chapter describes dynamic SQL, compares native dynamic SQL to the DBMS_
SQL package, and explains when to use dynamic SQL.

Chapter 7, "Using Procedures and Packages"

This chapter explains how to store reusable procedures in the database, and how to
group procedures into packages.

Chapter 8, "Calling External Procedures"

This chapter explains how to code the bodies of computation intensive procedures
in languages other than PL/SQL.

Part Ill: The Active Database

You can include all sorts of programming logic in the database itself, making the
benefits available to many applications and saving repetitious coding work.

Chapter 9, "Using Triggers"

This chapter explains how to make the database do special processing before, after,
or instead of running SQL statements. You can use triggers for things like logging
database access and validating or transforming data.

Chapter 10, "Working With System Events"

This chapter explains how to retrieve information, such as the user ID and database
name, about the event that fires a trigger.

Chapter 11, "Using the Publish-Subscribe Model for Applications"

This chapter introduces the Oracle Database model for asynchronous
communication, also known as messaging or queuing.

Part IV: Developing Specialized Applications

Chapter 12, "Using Regular Expressions With Oracle Database"

This chapter discusses regular expression support built into Oracle Database,
regular expression syntax, and how to write queries using regular expressions in
SQL.

Chapter 13, "Developing Web Applications with PL/SQL"

This chapter explains how to create dynamic Web pages and applications that work
with the Internet, e-mail, and so on, using the PL/SQL language.

Chapter 14, "Porting Non-Oracle Applications to Oracle Database 10g"

This chapter lists features and techniques you can use to make applications run on
Oracle Database 10g that were originally written for another, non-Oracle database.

Chapter 15, "Using Flashback Features"
This chapter describes how to use features that let you examine past data and its
history, and to recover that data.

Chapter 16, "Using Oracle XA with Transaction Monitors"
This chapter describes how to connect Oracle Database with a transaction monitor.

Related Documentation

For more information, see these Oracle resources.

» Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a
complete description of the PL/SQL high-level programming language, which
is Oracle's procedural extension to SQL.

XXXi

XXXii

The Oracle Call Interface (OCI) is described in Oracle Call Interface Programmer’s
Guide and Oracle C++ Call Interface Programmer’s Guide.

You can use the OCI to build third-generation language (3GL) applications that
access the Oracle Database.

The Oracle Database Security Guide discusses security features of the database
that application developers and database administrators need to be aware of.

Oracle also provides the Pro* series of precompilers, which allow you to embed
SQL and PL/SQL in your application programs. If you write 3GL application
programs in C, C++, COBOL, or FORTRAN that incorporate embedded SQL,
then refer to the corresponding precompiler manual. For example, if you
program in C or C++, then refer to the Pro*C/C++ Programmer’s Guide.

Oracle Developer /2000 is a cooperative development environment that
provides several tools including a form builder, reporting tools, and a
debugging environment for PL/SQL. Refer to the appropriate Oracle
Developer /2000 documentation if you use this product.

For SQL information, see the Oracle Database SQL Reference and Oracle Database
Administrator’s Guide. For basic Oracle Database concepts, see Oracle Database
Concepts.

For developing applications that manipulate XML data, see Oracle XML
Developer’s Kit Programmer’s Guide and Oracle XML DB Developer’s Guide.

Oracle Database error message documentation is available only in HTML. If
you have access only to the Oracle Documentation CD, you can browse the
error messages by range. After you find the specific range, use your browser's
"find in page" feature to locate the specific message. When connected to the
Internet, you can search for a specific error message using the error message
search feature of the Oracle Database online documentation.

Many of the examples in this book use the sample schemas of the seed
database, which is installed by default when you install Oracle. Refer to Oracle
Database Sample Schemas for information on how these schemas were created
and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/
To download free release notes, installation documentation, white papers, or

other collateral, visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go
directly to the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
s Conventions in Text

= Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.

(fixed-width
font)

elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_ STATS.GENERATE_STATS
procedure.

XXXiii

Convention

Meaning Example

lowercase
monospace

(fixed-width)
font

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace typeface indicates Enter sglplus to open SQL*Plus.
executable, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database Back up the datafiles and control files in the
names, net service names, and connect /diskl/oracle/dbs directory.
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values. Set the QUERY REWRITE ENABLED
initialization parameter to true.

The password is specified in the orapwd file.

The department id, department name,
and location_id columns are in the
hr.departments table.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. ~ Connect as oe user.

Enter these elements as shown. The JRepUtil class implements these

methods.

Lowercase monospace italic font You can specify the parallel_clause.

represents placeholders or variables. Run Uold release.SOL where old

release refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, and other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text, as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention

Meaning Example

[]

{}

XXXiV

Brackets enclose one or more optional DECIMAL (digits [, precision 1)
items. Do not enter the brackets.

Braces enclose two or more items, one of ~ {ENABLE | DISABLE}
which is required. Do not enter the braces.

A vertical bar represents a choice of two ~ {ENABLE | DISABLE}

or more options within brackets or braces.

Enter one of the options. Do not enter the [COMPRESS | NOCOMPRESS]
vertical bar.

Convention Meaning Example

Horizontal ellipsis points indicate either:

= That we have omitted parts of the CREATE TABLE ... AS subguery;
code that are not directly related to
the example

= That you can repeat a portion of the SELECT coll, col2, ... , coln FROM
employees;
code
Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.
Other notation You must enter symbols other than acctbal NUMBER(11,2);
brackets, braces, vertical bars, and ellipsis acct CONSTANT NUMBER(4) := 3;
points as shown.
Italics Italicized text indicates placeholders or CONNECT SYSTEM/system password

variables for which you must supply

particular values DB _NAME = database_ name

UPPERCASE Uppercase typeface indicates elements SELECT last name, employee id FROM
supplied by the system. We show these employees;
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the DROP TABLE hr.employees;
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT * FROM USER TABLES;

lowercase Lowercase typeface indicates SELECT last name, employee id FROM
programmatic elements that you supply. employees;
For example, lowercase indicates names 1plus hr/h
of tables, columns, or files. sqipius fr/hr
CREATE USER mjones IDENTIFIED BY

Note: Some programmatic elements use a ty3MU9;

mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to

XXXV

evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

XXXVi

What's New in Application Development?

The following sections give an overview of new application development features
introduced in this release and some previous releases of the database. Related
documentation on each feature is cross-referenced when it is available.

New Application Development Features in Oracle Database 10g

Release 1

This section discusses new features introduced in Oracle Database 10g Release 1
(10.1).

Regular Expression Support

A set of SQL functions introduced in this release let you perform queries and
manipulate string data using regular expressions. See Chapter 12, "Using
Regular Expressions With Oracle Database" for more information.

Oracle Expression Filter

Oracle Expression Filter lets you store conditional expressions in a column that
you can use in the WHERE clause of a database query. See "Representing
Conditional Expressions as Data" on page 2-32 for more information.

See Also: Oracle Database SQL Reference

Native floating-point datatypes

Column datatypes BINARY_FLOAT and BINARY_DOUBLE are introduced in
this release. These datatypes provide an alternative to using the Oracle NUMBER
datatype, with the following benefits:

= More efficient use of storage resources

XXXVii

XXXViii

» Faster arithmetic operations
= Support for numerical algorithms specified in the IEEE 754 Standard

Support for native floating-point datatypes in bind and fetch operations is
provided for the following client interfaces:

= SQL

= PL/SQL

. OCI

= OCCI

» Pro*C/C++
= JDBC

See Also: "Representing Numeric Data with Number and
Floating-Point Datatypes” on page 2-11
Terabyte-Size Large Object (LOB) support

This release provides support for terabyte-size LOB values (from 8 to 128
terabytes) in the following programmatic environments:

= Java (JDBC)
= OCI
= PL/SQL (package DBMS_LOB)

You can store and manipulate LOB (BLOB, CLOB, and NCLOB) datatypes larger
than 4GB.

See Also: For details on terabyte-size LOB support:
» Oracle Database Application Developer’s Guide - Large Objects

» Oracle Call Interface Programmer’s Guide

Flashback

This release has new and enhanced flashback features. You can now do the
following:

= Query the transaction history of a row.

= Obtain the SQL undo syntax for a row, to perform row-level flashback
operations.

s Perform remote queries of past data.

See Also: Chapter 15, "Using Flashback Features"

Oracle Data Provider for NET

Oracle Data Provider for .NET (ODP.NET) is a new programmatic environment
that implements a data provider for Oracle Database. It uses APIs native to
Oracle Database to offer fast and reliable access from any .NET application to
database features and data. ODP.NET also uses and inherits classes and
interfaces available in the Microsoft NET Framework Class Library.

See Also: Oracle Data Provider for NET Developer’s Guide

New Application Development Features in Oracle9i Release 2

This section gives an overview of application development features introduced in
Oracle9i Release 2 (9.2).

Enhancements to Flashback Query

You can perform an Oracle Flashback Query using the AS OF clause of the
SELECT statement rather than going through the DBMS_ FLASHBACK package.
This technique is very flexible, allowing you to perform joins, set operations,
subqueries, and views using different date/time or SCN settings for each table
in the query. You can also restore or capture past data by using a Flashback
Query inside an INSERT or CREATE TABLE AS SELECT statement.

See Also: "Using Flashback Features" on page 15-1

Using PL/SQL Records in INSERT and UPDATE Statements

When you represent related data items using a PL/SQL record, you can
perform insert and update operations using the entire record, instead of
specifying each record field separately.

See Also: PL/SQL User's Guide and Reference

Ability to rename constraints

XXXiX

xl

If a data management application experiences problems because it tries to create
a constraint when the constraint already exists, you can rename the existing
constraint to avoid the conflict. If you track down a constraint with a cryptic
system-generated name, you can give it a descriptive name to make it easier to
enable and disable later.

See Also: "Renaming Integrity Constraints" on page 3-24

Enhanced support for NCHAR, NVARCHAR?2, and NCLOB types

These globalization-support types can now be used as attributes of SQL and
PL/SQL object types, and in PL/SQL collection types such as varrays and
nested tables.

New XML programming capabilities

New and enhanced built-in types, such as XMLType and XDBURIType, let you
delegate XML parsing, storage, and retrieval to the database.

See Also: Oracle XML DB Developer’s Guide

Enhanced UTL_FILE package

The UTL_FILE package has a number of new functions for performing popular
file operations. You can seek, auto-flush, read and write binary data, delete files,
change file permissions, and more. Use the CREATE DIRECTORY statement
(using double quotation marks around any lowercase names), rather than the
UTL_FILE DIR initialization parameter.

See Also: PL/SQL Packages and Types Reference for details about
these enhancements
User-defined constructors

You can now override the system default constructor for an object type with
your own constructor function.

See Also: PL/SQL User’s Guide and Reference

Access to LOB data within triggers

You can access or change LOB data within BEFORE and INSTEAD OF triggers,
using the : NEW variable.

See Also: "Example: Modifying LOB Columns with a Trigger" on
page 9-18
= Synonyms for types
You can now define synonyms for types.
See Also: Oracle Database Administrator’s Guide for details on
creating synonyms
= Scrollable cursors in Pro*C/C++ applications
Scrollable cursors let you move forward and backward through the result set in

a Pro*C/C++ application.

See Also: "Highlights of Pro*C/C++ Features" on page 1-21

= Support for Connection Pooling in Pro*C/C++

The Connection Pool feature in Pro*C/C++ helps you optimize the performance
of Pro*C/C++ applications.

See Also: "Highlights of Pro*C/C++ Features" on page 1-21

= Better linking in online documentation

Many of the cross-references from this book to other books have been made
more specific, so that they link to a particular place within another book rather
than to its table of contents. If you are reading a printed copy of this book, you
can find the online equivalent, with full search capability, at
http://otn.oracle.com/documentation/.

Java Features Removed from the database in Oracle9i Release 2

This section discusses Java features that were removed from the database in
Oracle9i Database release 2 (version 9.2.0). Support for some of these features was
moved from the database to Oracle Application Server.

The following Java features and related technologies are no longer supported as
integrated components of the database:

= The J2EE stack, comprising:

= Enterprise Java Beans (E]B) Container

xli

= Oracle JavaServer Pages engine (OJSP)
= Oracle Servlet Engine (OSE)
s Common Object Request Broker Architecture (CORBA) framework

Oracle Application Server now includes Oracle Application Server Containers for
J2EE (OC4J). Migrate any existing applications that use the following technologies
in the database to OC4J: servlets, JSP pages, EJBs, and CORBA objects.

To develop new applications using E]Bs or CORBA, you must use the J2EE
components that are part of Oracle Application Server. E]Bs and CORBA are no
longer supported within the database.

You can still access the database from these components using Oracle Application
Server as a middle-tier. You can still write Java stored procedures and Java methods
for object types within database applications.

For more information on OC4J, visit the Oracle Application Server documentation
pages at:

http://otn.oracle.com/documentation/

See Also:
s Oracle Database [DBC Developer’s Guide and Reference

New Application Development Features in Oracle9i Release 1

This section gives an overview of application development features introduced in
Oracle9i Release 1 (9.0.1).

= Integration of SQL and PL/SQL parsers

PL/SQL now supports the complete range of syntax for SQL statements, such
as INSERT, UPDATE, DELETE, and so on. If you received errors for valid SQL
syntax in PL/SQL programs before, those statements should now work.

Because of more consistent error-checking, you might find that some invalid
code is now found at compile time instead of producing an error at runtime, or
vice versa. You might need to change the source code as part of the migration
procedure.

See Also: Oracle Database Upgrade Guide for details on the
complete migration procedure

xlii

Resumable Storage Allocation

When an application encounters some kinds of storage allocation errors, it can
suspend operations and take action such as resolving the problem or notifying
an operator. The operation can be resumed when storage is added or freed.

See Also: "Resuming Execution After a Storage Error Condition"
on page 5-38
Flashback

This release has new and enhanced flashback features. You can now do the
following:

= Query the transaction history of a row.

= Obtain the SQL undo syntax for a row, to perform row-level flashback
operations.

= Perform remote queries of past data.

See Also: "Using Flashback Features" on page 15-1

WITH Clause for Reusing Complex Subqueries

Rather than repeat a complex subquery, you can give it a name and refer to that
name multiple times within the same query. This is convenient for coding; it
also helps the optimizer find common code that can be optimized.

See Also: Oracle Database Administrator’s Guide for details on
creating synonyms

New Date and Time Types

The new datatype TIMESTAMP records time values including fractional
seconds. New datatypes TIMESTAMP WITH TIME ZONE and TIMESTAMP
WITH LOCAL TIME ZONE allow you to adjust date and time values to account
for time zone differences. You can specify whether the time zone observes
daylight savings time. New datatypes INTERVAL DAY TO SECOND and
INTERVAL YEAR TO MONTH represent differences between two date and time
values, simplifying date arithmetic.

xliii

xliv

See Also:
= "Summary of Oracle Built-In Datatypes" on page 2-2
= "Representing Date and Time Data" on page 2-20

Better Integration of LOB Datatypes
You can use character functions on CLOB and NCLOB types. You can treat BLOB
types as RAWs. Conversions between LOBs and other types are much simpler
now, particularly when converting from LONG to LOB types.

See Also:

= "Representing Large Amounts of Data" on page 2-34

= "How Oracle Database Converts Datatypes" on page 2-40

= "Representing Character Data" on page 2-8

Improved Globalization and National Language Support

Data can be stored in Unicode format using fixed-width or variable-width
character sets. String handling and storage declarations can be specified using
character lengths, where the number of bytes is computed for you, or explicit
byte lengths. You can set up the entire database to use the same length
semantics for strings, or specify the settings for individual procedures; this
setting is remembered if a procedure is invalidated.

See Also: "Representing Character Data" on page 2-8

Enhancements to Bulk Operations

You can now perform bulk SQL operations, such as bulk fetches, using native
dynamic SQL (the EXECUTE IMMEDIATE statement). You can perform bulk
insert or update operations that continue despite errors on some rows, then
examine the individual row problems after the operation is complete.

See Also: "Overview of Bulk Binds" on page 7-17

Improved Support for PL/SQL Web Applications

The UTL._HTTP and UTL_SMTP packages have a number of enhancements, such
as letting you access password-protected Web pages, and sending e-mail with
attachments.

See Also: Chapter 13, "Developing Web Applications with
PL/SQL" on page 13-1
Native Compilation of PL/SQL Code

Improve performance by compiling Oracle-supplied and user-written stored
procedures into native executables, using typical C development tools. This
setting is saved, so that the procedure is compiled the same way if it is later
invalidated.

See Also: "Compiling PL/SQL Procedures for Native Execution"

on page 7-21
Oracle C++ Call Interface (OCCI) API
The OCCI API lets you write fast, low-level database applications using C++. It
is similar to the Oracle Call Interface (OCI) API.

See Also: "Overview of OCI and OCCI" on page 1-25

Secure Application Roles

In OracleYi, application developers no longer need to secure a role by
embedding passwords inside applications. They can create application roles
and specify which PL/SQL package is authorized to enable the roles.
Application roles enabled by PL/SQL packages are called secure application
roles.

Creating Application Contexts
You can create an application context by entering a command like:

CREATE CONTEXT Order entry USING Apps.Oe ctx;

Alternatively, you can use Oracle Policy Manager to create an application
context.

Dedicated External Procedure Agents

You can run external procedure agents (the EXTPROC entry in tnsnames.ora)
under different instances of Oracle Database or on entirely separate machines.
This lets you configure external procedures more robustly, so that if one
external procedure fails, other external procedures can continue running in a
different agent process.

xlv

See Also:
» '"Loading External C Procedures" on page 8-5

= '"Publishing External Procedures" on page 8-10

xlvi

Part |

Introduction to Application Development
Features of Oracle Database

This part introduces application development features of Oracle Database.
It contains the following chapter:

s Chapter 1, "Programmatic Environments"

1

Programmatic Environments

This chapter contains these topics:

Overview of Developing an Oracle Database Application
Overview of PL/SQL

Overview of Java Support Built Into the Database
Overview of Pro*C/C++

Overview of Pro*COBOL

Overview of OCI and OCCI

Overview of Oracle Data Provider for NET (ODP.NET)
Overview of Oracle Objects for OLE (O0O40)

Choosing a Programming Environment

Programmatic Environments 1-1

Overview of Developing an Oracle Database Application

Overview of Developing an Oracle Database Application

As an application developer, you have many choices when it comes to writing a
program to interact with the database.

Client/Server Model

In a traditional client/server program, the code of your application runs on a
machine other than the database server. Database calls are transmitted from this
client machine to the database server. Data is transmitted from the client to the
server for insert and update operations, and returned from the server to the client
for query operations. The data is processed on the client machine. Client/server
programs are typically written using precompilers, where SQL statements are
embedded within the code of another language such as C, C++, or COBOL.

Server-Side Coding

You can develop application logic that resides entirely inside the database, using
triggers that are executed automatically when changes occur in the database, or
stored procedures that are called explicitly. Off-loading the work from your
application lets you reuse code that performs verification and cleanup, and control
database operations from a variety of clients. For example, by making stored
procedures callable through a Web server, you can construct a Web-based user
interface that performs the same functions as a client/server application.

Two-Tier Versus Three-Tier Models

Client/server computing is often referred to as a two-tier model: your application
communicates directly with the database server. In the three-tier model, another
server (known as the application server) processes the requests. The application
server might be a basic Web server, or might perform advanced functions like
caching and load-balancing. Increasing the processing power of this middle tier lets
you lessen the resources needed by client systems, resulting in a thin client
configuration where the client machine might need only a Web browser or other
means of sending requests over the TCP/IP or HTTP protocols.

User Interface

The interface that your application displays to end users depends on the technology
behind the application, as well as the needs of the users themselves. Experienced
users might enter SQL commands that are passed on to the database. Novice users
might be shown a graphical user interface that uses the graphics libraries of the

1-2 Oracle Database Application Developer's Guide - Fundamentals

Overview of PL/SQL

client system (such as Windows or X-Windows). Any of these traditional user
interfaces can also be provided in a Web browser using HTML and Java.

Stateful Versus Stateless User Interfaces

In traditional client/server applications, the application can keep a record of user
actions and use this information over the course of one or multiple sessions. For
example, past choices can be presented in a menu so that they do not have to be
entered again. When the application is able to save information like this, we refer to
the application as stateful.

Web or thin-client applications that are stateless are easier to develop. This means
that they gather all the required information, process it using the database, and then
start over from the beginning with the next user. This is a popular way to process
single-screen requests such as customer registration.

There are many ways to add stateful behavior to Web applications that are stateless
by default. For example, an entry form on one Web page can pass information on to
subsequent Web pages, allowing you to construct a wizard-like interface that
remembers the user's choices through several different steps. Cookies can be used to
store small items of information on the client machine, and retrieve them when the
user returns to a Web site. Servlets can be used to keep a database session open and
store variables between requests from the same client.

Overview of PL/SQL

PL/SQL is Oracle's procedural extension to SQL, the standard database access
language. An advanced 4GL (fourth-generation programming language'), PL/SQL
offers seamless SQL access, tight integration with Oracle Database and associated
tools, portability, security, and modern software engineering features such as data
encapsulation, overloading, exception handling, and information hiding.

With PL/SQL, you can manipulate data with SQL statements, and control program
flow with procedural constructs such as IF-THEN and LOOP. You can also declare
constants and variables, define procedures and functions, use collections and object
types, and trap run-time errors.

Applications written using any of the Oracle programmatic interfaces can call
PL/SQL stored procedures and send blocks of PL/SQL code to the server for
execution. 3GL (third-generation programming language?) applications can access

1 4GL: An "a%plication specific" language, with built-in treatment of an application domain.
PL/SQL and SQL have built-in treatment of the database domain.

Programmatic Environments 1-3

Overview of PL/SQL

PL/SQL scalar and composite datatypes through host variables and implicit
datatype conversion.

Because it runs inside the database, PL/SQL code is very efficient for data-intensive
operations, and minimizes network traffic in client/server applications.

PL/SQL's tight integration with Oracle Developer lets you develop the client and
server components of your application in the same language, then partition the
components for optimal performance and scalability. Also, Oracle's Web Forms lets
you deploy your applications in a multitier Internet or intranet environment
without modifying a single line of code.

See Also: PL/SQL User’s Guide and Reference

A Simple PL/SQL Example

The procedure debit_account takes money from a bank account. It accepts an
account number and an amount of money as parameters. It uses the account
number to retrieve the account balance from the database, then computes the new
balance. If this new balance is less than zero, the procedure jumps to an error
routine; otherwise, it updates the bank account.

PROCEDURE debit account (acct id INTEGER, debit amount REAL) IS
old balance REAL;
new balance REAL;
overdrawn EXCEPTION;
BEGIN
SELECT bal INTO old balance FROM accts
WHERE acct no = acct id;
new_balance := old balance - debit_amount;
IF new balance < 0 THEN
RAISE overdrawn;
ELSE
UPDATE accts SET bal = new balance
WHERE acct no = acct id;
END IF;
COMMIT;
EXCEPTION
WHEN overdrawn THEN
-- handle the error
END debit account;

2 3GL: A lan: uage designed to be easier than assembler language for a human to
understand. It Includes things like named variables. Unlike 4GL, it is not specific to a
particular application domain.

1-4 Oracle Database Application Developer's Guide - Fundamentals

Overview of PL/SQL

Advantages of PL/SQL

PL/SQL is a completely portable, high-performance transaction processing
language that offers the following advantages:

Full Support for SQL

PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction
control commands, as well as all the SQL functions, operators, and pseudocolumns.
So, you can manipulate Oracle Database data flexibly and safely. PL/SQL fully
supports SQL datatypes, reducing conversions as data is passed between
applications and the database.

Dynamic SQL is a programming technique that lets you build and process SQL
statements "on the fly" at run time. It gives PL/SQL flexibility comparable to
scripting languages such as Perl, Korn shell, and Tcl.

Tight Integration with Oracle Database

PL/SQL supports all the SQL datatypes. Combined with the direct access that SQL
provides, these shared datatypes integrate PL/SQL with the Oracle Database data
dictionary.

The $TYPE and $ROWTYPE attributes let your code adapt as table definitions
change. For example, the $TYPE attribute declares a variable based on the type of a
database column. If the column's type changes, your variable uses the correct type
at run time. This provides data independence and reduces maintenance costs.

Better Performance

If your application is database intensive, you can use PL/SQL blocks to group SQL
statements before sending them to Oracle Database for execution. This can
drastically reduce the communication overhead between your application and
Oracle Database.

PL/SQL stored procedures are compiled once and stored in executable form, so
procedure calls are quick and efficient. A single call can start a compute-intensive
stored procedure, reducing network traffic and improving round-trip response
times. Executable code is automatically cached and shared among users, lowering
memory requirements and invocation overhead.

Programmatic Environments 1-5

Overview of PL/SQL

Higher Productivity

PL/SQL adds procedural capabilities, such as Oracle Forms and Oracle Reports. For
example, you can use an entire PL/SQL block in an Oracle Forms trigger instead of
multiple trigger steps, macros, or user exits.

PL/SQL is the same in all environments. As soon as you master PL/SQL with one
Oracle tool, you can transfer your knowledge to others, and so multiply the
productivity gains. For example, scripts written with one tool can be used by other
tools.

Scalability

PL/SQL stored procedures increase scalability by centralizing application
processing on the server. Automatic dependency tracking helps you develop
scalable applications.

The shared memory facilities of the shared server (formerly known as
Multi-Threaded Server or MTS) enable Oracle Database to support many thousands
of concurrent users on a single node. For more scalability, you can use the Oracle
Connection Manager to multiplex network connections.

Maintainability

Once validated, a PL/SQL stored procedure can be used with confidence in any
number of applications. If its definition changes, only the procedure is affected, not
the applications that call it. This simplifies maintenance and enhancement. Also,
maintaining a procedure on the server is easier than maintaining copies on various
client machines.

PL/SQL Support for Object-Oriented Programming

Object Types An object type is a user-defined composite datatype that encapsulates a
data structure along with the functions and procedures needed to manipulate the
data. The variables that form the data structure are called attributes. The functions
and procedures that characterize the behavior of the object type are called methods,
which you can implement in PL/SQL.

Object types are an ideal object-oriented modeling tool, which you can use to
reduce the cost and time required to build complex applications. Besides allowing
you to create software components that are modular, maintainable, and reusable,
object types allow different teams of programmers to develop software components
concurrently.

1-6 Oracle Database Application Developer's Guide - Fundamentals

Overview of PL/SQL

Collections A collection is an ordered group of elements, all of the same type (for
example, the grades for a class of students). Each element has a unique subscript
that determines its position in the collection. PL/SQL offers two kinds of
collections: nested tables and varrays (short for variable-size arrays).

Collections work like the set, queue, stack, and hash table data structures found in
most third-generation programming languages. Collections can store instances of an
object type and can also be attributes of an object type. Collections can be passed as
parameters. So, you can use them to move columns of data into and out of database
tables or between client-side applications and stored subprograms. You can define
collection types in a PL/SQL package, then use the same types across many
applications.

Portability

Applications written in PL/SQL can run on any operating system and hardware
platform where Oracle Database runs. You can write portable program libraries and
reuse them in different environments.

Security

PL/SQL stored procedures let you divide application logic between the client and
the server, to prevent client applications from manipulating sensitive Oracle
Database data. Database triggers written in PL/SQL can prevent applications from
making certain updates, and can audit user queries.

You can restrict access to Oracle Database data by allowing users to manipulate it
only through stored procedures that have a restricted set of privileges. For example,
you can grant users access to a procedure that updates a table, but not grant them
access to the table itself.

See Also: Oracle Database Security Guide for details on database
security features

Built-In Packages for Application Development
= DBMS PIPE is used to communicate between sessions.

= DBMS ALERT is used to broadcast alerts to users.

= DBMS LOCKand DBMS TRANSACTION are used for lock and transaction
management.

= DBMS_ AQis used for Advanced Queuing.

= DBMS_ LOB s used to manipulate large objects.

Programmatic Environments 1-7

Overview of Java Support Built Into the Database

= DBMS ROWID is used for employing ROWID values.
= UTL RAWis the RAW facility.

= UTL_REF is for work with REF values.

Built-In Packages for Server Management
= DBMS_SESSION is for session management by DBAs.

= DBMS_SPACE and DBMS_SHARED_POOL provide space information and
reserve shared pool resources.

= DBMS_JOB is used to schedule jobs in the server.

Built-In Packages for Distributed Database Access

These provide access to snapshots, advanced replication, conflict resolution,
deferred transactions, and remote procedure calls.

Overview of Java Support Built Into the Database

This section gives an overview of built-in database features that support Java
applications. The database includes the core JDK libraries such as java.lang,
java. io, and so on. The database supports client-side Java standards such as JDBC
and SQLJ, and provides server-side JDBC and SQL]J drivers that allow
data-intensive Java code to run within the database.

See Also:

s Oracle Database Concepts for background information about Java
and how the database supports it

» Oracle Database Java Developer’s Guide
» Oracle Database [DBC Developer’s Guide and Reference
» Oracle Database JPublisher User’s Guide

Overview of Oracle JVM

Oracle JVM, the Java Virtual Machine provided with the Oracle Database, is
compliant with the J2SE version 1.4.x specification and supports the database
session architecture.

1-8 Oracle Database Application Developer's Guide - Fundamentals

Overview of Java Support Built Into the Database

Any database session can activate a dedicated JVM. All sessions share the same
JVM code and statics; however, private states for any given session are held, and
subsequently garbage collected, in an individual session space.

This design provides the following benefits:

= Java applications have the same session isolation and data integrity as SQL
operations.

= There is no need to run Java in a separate process for data integrity.
= Oracle JVM is a robust JVM with a small memory footprint.

s The JVM has the same linear SMP scalability as the database and can support
thousands of concurrent Java sessions.

Oracle JVM works consistently with every platform supported by Oracle Database.
Java applications that you develop using Oracle JVM can be ported to any
supported platform easily.

Oracle JVM includes a deployment-time native compiler that enables Java code to
be compiled once, stored in executable form, shared among users, and invoked
more quickly and efficiently.

Security features of the database are also available using Oracle JVM. Java classes
must be loaded in a database schema (using Oracle JDeveloper, a third-party IDE,
SQL*Plus, or the loadjava utility) before they can be invoked. Java class invocation
is secured and controlled through database authentication and authorization, Java 2
security, and invoker's or definer's rights.

Overview of Oracle Extensions to JDBC

JDBC (Java Database Connectivity) is an API (Applications Programming Interface)
that allows Java to send SQL statements to an object-relational database such as
Oracle Database.

The JDBC standard defines four types of JDBC drivers:
= Typel. AJDBC-ODBC bridge. Software must be installed on client systems.

= Type 2. Has Native methods (calls C or C++) and Java methods. Software must
be installed on the client.

» Type 3. Pure Java. The client uses sockets to call middleware on the server.

= Type 4. The most pure Java solution. Talks directly to the database using Java
sockets.

Programmatic Environments 1-9

Overview of Java Support Built Into the Database

JDBC is based on the X/Open SQL Call Level Interface, and complies with the
SQLI2 Entry Level standard.

You can use JDBC to do dynamic SQL. Dynamic SQL means that the embedded
SQL statement to be executed is not known before the application is run, and
requires input to build the statement.

The drivers that are implemented by Oracle have extensions to the capabilities in
the JDBC standard that was defined by Sun Microsystems. Oracle's
implementations of JDBC drivers are described next. Oracle Database support of
and extensions to various levels of the JDBC standard are described in "Oracle
Database Extensions to JDBC Standards" on page 1-11.

JDBC Thin Driver

The JDBC thin driver is a Type 4 (100% pure Java) driver that uses Java sockets to
connect directly to a database server. It has its own implementation of a Two-Task
Common (TTC), a lightweight implementation of TCP/IP from Oracle Net. It is
written entirely in Java and is therefore platform-independent.

The thin driver does not require Oracle software on the client side. It does need a
TCP/IP listener on the server side. Use this driver in Java applets that are
downloaded into a Web browser, or in applications where you do not want to install
Oracle client software. The thin driver is self-contained, but it opens a Java socket,
and thus can only run in a browser that supports sockets.

JDBC OCI Driver

The OCI driver is a Type 2 JDBC driver. It makes calls to the OCI (Oracle Call
Interface) which is written in C, to interact with Oracle Database, thus using native
and Java methods.

The OCI driver allows access to more features than the thin driver, such as
Transparent Application Fail-Over, advanced security, and advanced LOB
manipulation.

The OCI driver provides the highest compatibility between the different Oracle
Database versions, from 7 to 9i. It also supports all installed Oracle Net adapters,
including IPC, named pipes, TCP/IP, and IPX/SPX.

Because it uses native methods (a combination of Java and C) the OCI driver is
platform-specific. It requires a client Oracle8i or later installation including Oracle
Net (formerly known as Net8), OCI libraries, CORE libraries, and all other
dependent files. The OCI driver usually executes faster than the thin driver.

1-10 Oracle Database Application Developer's Guide - Fundamentals

Overview of Java Support Built Into the Database

The OCI driver is not appropriate for Java applets, because it uses a C library that is
platform-specific and cannot be downloaded into a Web browser. It is usable in J2EE
components running in middle-tier application servers, such as Oracle Application
Server. Oracle Application Server provides middleware services and tools that
support access between applications and browsers.

JDBC Server-Side Internal Driver

The JDBC server-side internal driver is a Type 2 driver that runs inside the database
server, reducing the number of round-trips needed to access large amounts of data.
The driver, the Java server VM, the database, the Java native compiler which speeds
execution by as much as 10 times, and the SQL engine all run within the same
address space.

This driver provides server-side support for any Java program used in the database:
SQLJ stored procedures, functions, and triggers, and Java stored procedures. You
can also call PL/SQL stored procedures, functions, and triggers.

The server driver fully supports the same features and extensions as the client-side
drivers.

Oracle Database Extensions to JDBC Standards
Oracle Database includes the following extensions to the JDBC 1.22 standard:

= Support for Oracle datatypes

s Performance enhancement by row prefetching

= Performance enhancement by execution batching

= Specification of query column types to save round-trips
= Control of DatabaseMetaData calls

Oracle Database supports all APIs from the JDBC 2.0 standard, including the core
APIs, optional packages, and numerous extensions. Some of the highlights include
datasources, JTA and distributed transactions.

Oracle Database supports these features from the JDBC 3.0 standard:
= Support for JDK 1.4.

= Toggling between local and global transactions.

= Transaction savepoints.

= Reuse of prepared statements by connection pools.

Programmatic Environments 1-11

Overview of Java Support Built Into the Database

Sample JDBC 2.0 Program

The following example shows the recommended technique for looking up a data
source using JNDI in JDBC 2.0:

// import the JDBC packages
import java.sql.*;

import javax.sql.*;

import oracle.jdbc.pool.*;

InitialContext ictx = new InitialContext();

DataSource ds = (DataSource)ictx.lookup ("jdbc/OracleDS") ;
Connection conn = ds.getConnection();

Statement stmt = conn.createStatement () ;

ResultSet rs = stmt.executeQuery ("SELECT ename FROM emp") ;
while (rs.next()) {

out.println(rs.getString("ename") + "
");

}

conn.close() ;

Sample Pre-2.0 JDBC Program

The following source code registers an Oracle JDBC thin driver, connects to the
database, creates a Statement object, executes a query, and processes the result set.

The SELECT statement retrieves and lists the contents of the ENAME column of the
EMP table.

import java.sql.*
import java.math.*
import java.io.*
import java.awt.*

class JdbcTest {
public static void main (String args []) throws SQLException {
// Load Oracle driver
DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

// Connect to the local database
Connection conn =
DriverManager.getConnection ("jdbc:oracle:thin:@myhost:1521:0rcl",
"scott", "tiger");

// Query the employee names

Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery ("SELECT ENAME FROM EMP");

1-12 Oracle Database Application Developer's Guide - Fundamentals

Overview of Java Support Built Into the Database

// Print the name out
while (rset.next ())
System.out.println (rset.getString (1)) ;
// Close the result set, statement, and the connection
rset.close();
stmt.close() ;
conn.close();

}
}

One Oracle Database extension to the JDBC drivers is a form of the
getConnection () method that uses a Properties object. The Properties
object lets you specify user, password, and database information as well as row
prefetching and execution batching.

To use the OCI driver in this code, replace the Connection statement with:

Connection conn = DriverManager.getConnection ("jdbc:oracle:oci8:@MyHostString",
"scott", "tiger");

where MyHostString is an entry in the TNSNAMES.ORA file.

If you are creating an applet, the getConnection () and registerDriver ()
strings will be different.

JDBC in SQLJ Applications

JDBC code and SQLJ code (see "Overview of Oracle SQL]J" on page 1-13)
interoperate, allowing dynamic SQL statements in JDBC to be used with both static
and dynamic SQL statements in SQL]J. A SQLJ iterator class corresponds to the
JDBC result set.

See Also: Oracle Database JDBC Developer’s Guide and Reference for
more information on JDBC

Overview of Oracle SQLJ
SQLJ is an ANSI SQL-1999 standard for embedding SQL statements in Java source
code. SQL]J provides a simpler alternative to JDBC for both client-side and
server-side SQL data access from Java.
A SQL]J source file contains Java source with embedded SQL statements. Oracle
SQLJ supports dynamic as well as static SQL. Support for dynamic SQL is an Oracle
extension to the SQLJ standard.

Programmatic Environments 1-13

Overview of Java Support Built Into the Database

Note: The term "SQLJ," when used in this manual, refers to the
Oracle SQL] implementation, including Oracle SQL] extensions.

Oracle Database provides a translator and a run time driver to support SQLJ. The
SQL]J translator is 100% pure Java and is portable to any JVM that is compliant with
JDK version 1.1 or higher.

The Oracle SQLJ translator performs the following tasks:

s Translates SQLJ source to Java code with calls to the SQL] run time driver. The
SQLJ translator converts the source code to pure Java source code, and can
check the syntax and semantics of static SQL statements against a database
schema and verify the type compatibility of host variables with SQL types.

= Compiles the generated Java code using the Java compiler.

= (Optional) Creates profiles for the target database. SQL] generates "profile" files
with customization specific to Oracle Database.

Oracle Database supports SQLJ stored procedures, functions, and triggers which
execute in the Oracle JVM. SQL]J is integrated with JDeveloper. Source-level
debugging support for SQLJ is available in JDeveloper.

Here is an example of a simple SQL]J executable statement, which returns one value
because empno is unique in the emp table:

String name;
#sql { SELECT first name INTO :name FROM employees WHERE employee id=112 };
System.out.println("Name is " + name + ", employee number = " + employee id);

Each host variable (or qualified name or complex Java host expression) included in
a SQL expression is preceded by a colon (:). Other SQL] statements are declarative
(they declare Java types). For example, you can declare an iterator (a construct
related to a database cursor) for queries that retrieve many values, as follows:

#sql iterator EmpIter (String EmpNam, int EmpNumb) ;

See Also: For more examples and details on Oracle SQL]J syntax:
» Oracle Database JPublisher User’s Guide

= Sample SQLJ code available on the Oracle Technology Network
Web site: http://otn.oracle.com/

1-14 Oracle Database Application Developer's Guide - Fundamentals

Overview of Java Support Built Into the Database

Benefits of SQLJ

Oracle SQLJ extensions to Java allow rapid development and easy maintenance of
applications that perform database operations through embedded SQL.

In particular, Oracle SQLJ:

= Provides a concise, legible mechanism for database access from static SQL. Most
SQL in applications is static. SQL]J provides more concise and less error-prone
static SQL constructs than JDBC does.

s Checks static SQL at translate time.

= Provides an SQL Checker module for verification of syntax and semantics at
translate-time.

= Provides flexible deployment configurations. This makes it possible to
implement SQL]J on the client or database side or in the middle tier.

= Supports a software standard. SQL]J is an effort of a group of vendors and will
be supported by all of them. Applications can access multiple database vendors.

= Provides source code portability. Executables can be used with all of the
vendors' DBMSs if the code does not rely on any vendor-specific features.

= Enforces a uniform programming style for the clients and the servers.

= Integrates the SQL]J translator with Oracle JDeveloper, a graphical IDE that
provides SQLJ translation, Java compilation, profile customizing, and
debugging at the source code level, all in one step.

= Includes Oracle type extensions. Datatypes supported include: LOB datatypes,
ROWID, REF CURSOR, VARRAY, nested table, user-defined object types, RAW, and
NUMBER.

Comparing SQLJ with JDBC

JDBC provides a complete dynamic SQL interface from Java to databases. It gives
developers full control over database operations. SQL] simplifies Java database
programming to improve development productivity.

JDBC provides fine-grained control of the execution of dynamic SQL from Java,
while SQL]J provides a higher-level binding to SQL operations in a specific database
schema. Here are some differences:

= SQLJ source code is more concise than equivalent JDBC source code.

= SQLJ uses database connections to type-check static SQL code. JDBC, being a
completely dynamic API, does not.

Programmatic Environments 1-15

Overview of Java Support Built Into the Database

= SQLJ provides strong typing of query outputs and return parameters and
allows type-checking on calls. JDBC passes values to and from SQL without
compile-time type checking.

= SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires a separate get or set statement for each bind variable
and specifies the binding by position number.

= SQLJ provides simplified rules for calling SQL stored procedures and functions.
For example, the following JDBC excerpt requires a generic call to a stored
procedure or function, in this case fun, to have the following syntax. (This
examples shows SQL92 and Oracle JDBC syntaxes. Both are allowed.)

prepStmt .prepareCall ("{call fun(?,?)}"); //stored procedure SQL92

prepStmt .prepareCall ("{? = call fun(?,?)}"); //stored function SQL92

prepStmt.prepareCall ("begin fun(:1,:2);end;"); //stored procedure Oracle
(

prepStmt.prepareCall ("begin :1 := fun(:2,:3);end;");//stored func Oracle

Here is the SQLJ equivalent:

#sql {call fun(param list) }; //Stored procedure
// Declare x

#sql x = {VALUES (fun(param list)) }; // Stored function
// where VALUES is the SQL construct

The following benefits are common to SQLJ and JDBC:
= SQLJ source files can contain JDBC calls. SQL] and JDBC are interoperable.

s Oracle JPublisher generates custom Java classes to be used in your SQLJ or
JDBC application for mappings to Oracle object types and collections.

= Java and PL/SQL stored procedures can be used interchangeably.

SQLJ Stored Procedures in the Server

SQLJ applications can be stored and executed in the server. To do so, you can use
the following techniques:

» Translate, compile, and customize the SQL]J source code on a client and load the
generated classes and resources into the server with the 1oadjava utility. The
classes are typically stored in a Java archive (. jar) file.

= Load the SQL] source code into the server, also using 1oadjava, where it is
translated and compiled by the server's embedded translator.

1-16 Oracle Database Application Developer's Guide - Fundamentals

Overview of Java Support Built Into the Database

See Also: Oracle Database JPublisher User’s Guide for more
information on using stored procedures with Oracle SQLJ

Overview of Oracle JPublisher

Oracle JPublisher is a code generator that automates the process of creating
database-centric Java classes by hand. Oracle JPublisher is a client-side utility and is
built into the database system. You can run Oracle JPublisher from the
command-line or directly from the Oracle JDeveloper IDE.

Oracle JPublisher inspects PL/SQL packages and database object types such as SQL
object types, VARRAY types, and nested table types; then generates a Java class that
is a wrapper around the PL/SQL package with corresponding fields and methods.

The generated Java class can be incorporated and used by Java clients or J2EE
components to exchange and transfer object type instances to and from the database
transparently.

See Also: Oracle Database JPublisher User’s Guide

Overview of Java Stored Procedures

Java stored procedures allow you to implement programs that run in the database
server, independent from programs that run in the middle tier. Structuring your
applications in this way reduces complexity and increases reuse, security,
performance, and scalability.

For example, you can create a Java stored procedure that performs operations that
require data persistence and a separate program to perform presentation or
business logic operations.

Java stored procedures interface with SQL using a similar execution model as
PL/SQL.

Overview of Database Web Services

Web services represent a distributed computing paradigm for Java application
development that is an alternative to earlier Java protocols such as JDBC. It allows
application-to-application interaction using XML and Web protocols. The key
technologies used in Web services are:

= Web Services Description Language (WSDL)—A standard format for creating
an XML document that specifies the operations and parameters, including
parameter types, provided by a Web service. In addition, a WSDL document

Programmatic Environments 1-17

Overview of Java Support Built Into the Database

describes the location, the transport protocol, and the invocation style for the
Web service.

= Simple Object Access Protocol (SOAP) messaging—An XML-based message
protocol used by Web services. SOAP does not prescribe a specific transport
mechanism, such as HTTP, FTP, SMTP, or JMS; however, most Web services
accept messages using HTTP or HTTPS.

= Universal Description, Discovery, and Integration (UDDI) business registry—A
directory that businesses use to list Web services on the internet. The UDDI
registry is often compared to a telephone directory, listing unique identifiers
(white pages), business categories (yellow pages), and how to bind to a service
protocol (green pages).

Web services can use a variety of techniques and protocols. For example,
dispatching can happen in a synchronous (typical) or asynchronous manner,
invocation can be performed in RPC-style (a single operation with arguments is
sent and a response returned) or in message style (a one-way SOAP document
exchange), and different encoding rules can be used (literal or encoded). When
calling a Web service, you may know everything about it beforehand (static
invocation), or you can discover its operations and transport endpoints on the fly
(dynamic invocation).

Database as a Web Service Provider

The database can function as either a Web service provider or as a Web service
consumer. When used as a Web services provider, the database enables sharing and
disconnected access to stored procedures, data, metadata, and other database
resources such as the queuing and messaging systems.

As a Web service provider, the database provides a disconnected and heterogeneous
environment that:

= Exposes PL/SQL as well as Java stored procedures
= Exposes SQL Queries and DML statements

= Exposes XML operations using existing and emerging XML APIs such as XSU,
SQL/X, and XQuery.

= Exposes Advanced Queuing queues and operations

= Enables deferred invocation of database operations

Database as a Web Service Consumer
In some situations, the database functions as a Web service consumer.

1-18 Oracle Database Application Developer's Guide - Fundamentals

Overview of Java Support Built Into the Database

For example, when business data is available dynamically from an external Web
service, your database application might need to:

Fire a trigger on a data value received from a Web service.

Monitor and query dynamic data over time, such as stock prices, mortgage
interest rates, currency exchange rates, or atmospheric data.

Overview of Writing Procedures and Functions in Java

You write these named blocks and then define them using the 1oadjava command
or SQL CREATE FUNCTION, CREATE PROCEDURE, or CREATE PACKAGE statements.
These Java methods can accept arguments and are callable from:

SQL CALL statements.

Embedded SQL CALL statements.

PL/SQL blocks, subprograms and packages.

DML statements (INSERT, UPDATE, DELETE, and SELECT).

Oracle development tools such as OCI, Pro*C/C++ and Oracle Developer.

Oracle Java interfaces such as JDBC, SQL]J statements, CORBA, and Enterprise
Java Beans.

Method calls from object types.

Overview of Writing Database Triggers in Java

A database trigger is a stored procedure that Oracle Database invokes ("fires")
automatically when certain events occur, for example, when a DML operation
modifies a certain table. Triggers enforce business rules, prevent incorrect values
from being stored, and reduce the need to perform checking and cleanup operations
in each application.

Why Use Java for Stored Procedures and Triggers?

Stored procedures and triggers are compiled once, are easy to use and maintain,
and require less memory and computing overhead.

Network bottlenecks are avoided, and response time is improved. Distributed
applications are easier to build and use.

Computation-bound procedures run faster in the server.

Programmatic Environments 1-19

Overview of Pro*C/C++

= Data access can be controlled by letting users have only stored procedures and
triggers that execute with their definer's privileges instead of invoker's rights.

= PL/SQL and Java stored procedures can call each other.

= Java in the server follows the Java language specification and can use the SQLJ
standard, so that databases other than Oracle Database are also supported.

= Stored procedures and triggers can be reused in different applications as well as
different geographic sites.

Overview of Pro*C/C++

The Pro*C/C++ precompiler is a software tool that allows the programmer to
embed SQL statements in a C or C++ source file. Pro*C/C++ reads the source file as
input and outputs a C or C++ source file that replaces the embedded SQL
statements with Oracle runtime library calls, and is then compiled by the C or C++
compiler.

When there are errors found during the precompilation or the subsequent
compilation, modify your precompiler input file and re-run the two steps.

How You Implement a Pro*C/C++ Application

Here is a simple code fragment from a C source file that queries the table EMP which
is in the schema SCOTT:

#define UNAME LEN 10

int emp number;
/* Define a host structure for the output values of a SELECT statement. */
/* No declare section needed if precompiler option MODE=ORACLE */
struct {

VARCHAR emp name [UNAME LEN] ;

float salary;

float commission;
} emprec;
/* Define an indicator structure to correspond to the host output structure. */
struct {

short emp name ind;
short sal ind;
short comm_ind;

} emprec_ind;

1-20 Oracle Database Application Developer's Guide - Fundamentals

Overview of Pro*C/C++

/* Select columns ename, sal, and comm given the user's input for empno. */
EXEC SQL SELECT ename, sal, comm
INTO :emprec INDICATOR :emprec ind
FROM emp
WHERE empno = :emp number;

The embedded SELECT statement is only slightly different from an interactive
(SQL*Plus) SELECT statement. Every embedded SQL statement begins with EXEC
SQL. The colon (:), precedes every host (C) variable. The returned values of data
and indicators (set when the data value is NULL or character columns have been
truncated) can be stored in structs (such as in the preceding code fragment), in
arrays, or in arrays of structs. Multiple result set values are handled very simply in
a manner that resembles the case shown, where there is only one result, because of
the unique employee number. You use the actual names of columns and tables in
embedded SQL.

Use the default precompiler option values, or you can enter values which give you
control over the use of resources, how errors are reported, the formatting of output,
and how cursors (which correspond to a particular connection or SQL statement)
are managed. Cursors are used when there are multiple result set values.

Enter the options either in a configuration file, on the command line, or in-line
inside your source code with a special statement that begins with EXEC ORACLE. If
there are no errors found, you can then compile, link, and execute the output source
file, like any other C program that you write.

Use the precompiler to create server database access from clients that can be on
many different platforms. Pro*C/C++ allows you the freedom to design your own
user interfaces and to add database access to existing applications.

Before writing your embedded SQL statements, you may want to test interactive
versions of the SQL in SQL*Plus. You then make only minor changes to start testing
your embedded SQL application.

Highlights of Pro*C/C++ Features

The following is a short subset of the capabilities of Pro*C/C++. For complete
details, see the Pro*C/C++ Precompiler Programmer’s Guide.

= You can write your application in either C or C++.

= You can write multithreaded programs if your platform supports a threads
package. Concurrent connections are supported in either single-threaded or
multithreaded applications.

Programmatic Environments 1-21

Overview of Pro*C/C++

= You can improve performance by embedding PL/SQL blocks. These blocks can
call functions or procedures in Java or PL/SQL that are written by you or
provided in Oracle Database packages.

» Using precompiler options, you can check the syntax and semantics of your
SQL or PL/SQL statements during precompilation, as well as at runtime.

= You can call stored PL/SQL and Java subprograms. Modules written in COBOL
or in C can be called from Pro*C/C++. External C procedures in shared libraries
are callable by your program.

= You can conditionally precompile sections of your code so that they can execute
in different environments.

= You can use arrays, or structures, or arrays of structures as host and indicator
variables in your code to improve performance.

= You can deal with errors and warnings so that data integrity is guaranteed. As a
programmer, you control how errors are handled.

= Your program can convert between internal datatypes and C language

datatypes.

s The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI),
lower-level C and C++ interfaces, are available for use in your precompiler
source.

s Pro*C/C++ supports dynamic SQL, a technique that allows users to input
variable values and statement syntax.

s Pro*C/C++ can use special SQL statements to manipulate tables containing
user-defined object types. An Object Type Translator (OTT) will map the object
types and named collection types in your database to structures and headers
that you will then include in your source.

= Two kinds of collection types, nested tables and VARRAY, are supported with a
set of SQL statements that allow a high degree of control over data.

= Large Objects (LOBs: CLOB, NCLOB, and BFILE datatypes) are accessed by
another set of SQL statements.

= A new ANSI SQL standard for dynamic SQL is supported for new applications,
so that you can execute SQL statements with a varying number of host
variables. An older technique for dynamic SQL is still usable by pre-existing
applications.

= Globalization support lets you use multibyte characters and UCS2 Unicode
data.

1-22 Oracle Database Application Developer's Guide - Fundamentals

Overview of Pro*COBOL

= Using scrollable cursors, you can move backward and forward through a result
set. For example, you can fetch the last row of the result set, or jump forward or
backward to an absolute or relative position within the result set.

= A connection pool is a group of physical connections to a database that can be
shared by several named connections. Enabling the connection pool option
can help to optimize the performance of Pro*C/C++ application. The
connection pool option is not enabled by default.

Overview of Pro*COBOL

The Pro*COBOL precompiler is a software tool that allows the programmer to
embed SQL statements in a COBOL source code file. Pro*COBOL reads the source
file as input and outputs a COBOL source file that replaces the embedded SQL
statements with Oracle Database runtime library calls, and is then compiled by the
COBOL compiler.

When there are errors found during the precompilation or the subsequent
compilation, modify your precompiler input file and re-run the two steps.

How You Implement a Pro*COBOL Application

Here is a simple code fragment from a source file that queries the table EMP which is

in the schema SCOTT:

WORKING-STORAGE SECTION.

*

* DEFINE HOST INPUT AND OUTPUT HOST AND INDICATOR VARIABLES.
* NO DECLARE SECTION NEEDED IF MODE=ORACLE.

*

01 EMP-REC-VARS.

05
05
05
05
05

PROCEDURE DIVISION.

EMP-NAME
EMP-NUMBER
SALARY
COMMISSION
COMM-IND

EXEC SQL
SELECT ENAME, SAL, COMM

INTO :EMP-NAME,

FROM EMP

PIC X(10) VARYING.

PIC S9(4) COMP VALUE ZERO.

PIC S9(5)V99 COMP-3 VALUE ZERO.

PIC S9(5)V99 COMP-3 VALUE ZERO.
(4)

PIC S9(4) COMP VALUE ZERO.

:SALARY, :COMMISSION:COMM-IND

Programmatic Environments 1-23

Overview of Pro*COBOL

WHERE EMPNO = :EMP_NUMBE
END-EXEC.

The embedded SELECT statement is only slightly different from an interactive
(SQL*Plus) SELECT statement. Every embedded SQL statement begins with EXEC
SQL. The colon (:) precedes every host (COBOL) variable. The SQL statement is
terminated by END-EXEC. The returned values of data and indicators (set when the
data value is NULL or character columns have been truncated) can be stored in
group items (such as in the preceding code fragment), in tables, or in tables of group
items. Multiple result set values are handled very simply in a manner that
resembles the case shown, where there is only one result, given the unique
employee number. You use the actual names of columns and tables in embedded
SQL.

Use the default precompiler option values, or enter values that give you control
over the use of resources, how errors are reported, the formatting of output, and
how cursors are managed (cursors correspond to a particular connection or SQL
statement).

Enter the options in a configuration file, on the command line, or in-line inside your
source code with a special statement that begins with EXEC ORACLE. If there are
no errors found, you can then compile, link, and execute the output source file, like
any other COBOL program that you write.

Use the precompiler to create server database access from clients that can be on
many different platforms. Pro*COBOL allows you the freedom to design your own
user interfaces and to add database access to existing COBOL applications.

The embedded SQL statements available conform to an ANSI standard, so that you
can access data from many databases in a program, including remote servers
networked through Oracle Net.

Before writing your embedded SQL statements, you may want to test interactive
versions of the SQL in SQL*Plus. You then make only minor changes to start testing
your embedded SQL application.

Highlights of Pro*COBOL Features
The following is a short subset of the capabilities of Pro*COBOL.

= You can call stored PL/SQL or Java subprograms. You can improve
performance by embedding PL/SQL blocks. These blocks can call PL/SQL
functions or procedures written by you or provided in Oracle Database
packages.

1-24 Oracle Database Application Developer's Guide - Fundamentals

Overview of OCl and OCCI

Precompiler options allow you to define how cursors, errors, syntax-checking,
file formats, and so on, are handled.

Using precompiler options, you can check the syntax and semantics of your
SQL or PL/SQL statements during precompilation, as well as at runtime.

You can conditionally precompile sections of your code so that they can execute
in different environments.

Use tables, or group items, or tables of group items as host and indicator
variables in your code to improve performance.

You can program how errors and warnings are handled, so that data integrity is
guaranteed.

Pro*COBOL supports dynamic SQL, a technique that allows users to input
variable values and statement syntax.

See Also: Pro*COBOL Programmer’s Guide for complete details

Overview of OCl and OCCI

The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI) are
application programming interfaces (APIs) that allow you to create applications that
use native procedures or function calls of a third-generation language to access
Oracle Database and control all phases of SQL statement execution. These APIs
provide:

Improved performance and scalability through the efficient use of system
memory and network connectivity

Consistent interfaces for dynamic session and transaction management in a
two-tier client/server or multitier environment

N-tiered authentication
Comprehensive support for application development using Oracle objects
Access to external databases

Ability to develop applications that service an increasing number of users and
requests without additional hardware investments

OClI lets you manipulate data and schemas in a database using a host programming
language, such as C. OCCI is an object-oriented interface suitable for use with C++.
These APIs provide a library of standard database access and retrieval functions in

the form of a dynamic runtime library (OCILIB) that can be linked in an application

Programmatic Environments 1-25

Overview of OCl and OCCI

at runtime. This eliminates the need to embed SQL or PL/SQL within 3GL
programs.

See Also: For more information about OCI and OCCI calls:

s Oracle Call Interface Programmer’s Guide

» Oracle C++ Call Interface Programmer’s Guide

» Oracle Streams Advanced Queuing User’s Guide and Reference
» Oracle Database Globalization Support Guide

» Oracle Data Cartridge Developer’s Guide

Advantages of OCI

OCI provides significant advantages over other methods of accessing Oracle
Database:

More fine-grained control over all aspects of the application design.
High degree of control over program execution.

Use of familiar 3GL programming techniques and application development
tools such as browsers and debuggers.

Support of dynamic SQL, method 4.

Availability on the broadest range of platforms of all the Oracle programmatic
interfaces.

Dynamic bind and define using callbacks.
Describe functionality to expose layers of server metadata.
Asynchronous event notification for registered client applications.

Enhanced array data manipulation language (DML) capability for array
INSERTS, UPDATES, and DELETES.

Ability to associate a commit request with an execute to reduce round-trips.

Optimization for queries using transparent prefetch buffers to reduce
round-trips.

Thread safety, so you do not have to implement mutual exclusion (mutex) locks
on OCI handles.

The server connection in nonblocking mode means that control returns to the
OCI code when a call is still executing or could not complete.

1-26 Oracle Database Application Developer's Guide - Fundamentals

Overview of OCl and OCCI

Parts of the OCI

The OCI encompasses four main sets of functionality:

» OCl relational functions, for managing database access and processing SQL
statements

s OCI navigational functions, for manipulating objects retrieved from an Oracle
Database

» OCI datatype mapping and manipulation functions, for manipulating data
attributes of Oracle types

» OCI external procedure functions, for writing C callbacks from PL/SQL

Procedural and Non-Procedural Elements

The Oracle Call Interface (OCI) lets you develop applications that combine the
non-procedural data access power of Structured Query Language (SQL) with the
procedural capabilities of most programming languages, including C and C++.

» Inanon-procedural language program, the set of data to be operated on is
specified, but what operations will be performed and how the operations are to
be carried out is not specified. The non-procedural nature of SQL makes it an
easy language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

» Ina procedural language program, the execution of most statements depends
on previous or subsequent statements and on control structures, such as loops
or conditional branches, which are not available in SQL. The procedural nature
of these languages makes them more complex than SQL, but it also makes them
very flexible and powerful.

The combination of both non-procedural and procedural language elements in an
OCI program provides easy access to Oracle Database in a structured programming
environment.

The OCI supports all SQL data definition, data manipulation, query, and
transaction control facilities that are available through Oracle Database. For
example, an OCI program can run a query against Oracle Database. The queries can
require the program to supply data to the database using input (bind) variables, as
follows:

SELECT name FROM employees WHERE empno = :empnumber

Programmatic Environments 1-27

Overview of OCl and OCCI

In the preceding SQL statement, : empnumber is a placeholder for a value that will
be supplied by the application.

You can alternatively use PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications
written in SQL alone. The OCI also provides facilities for accessing and
manipulating objects in Oracle Database.

Building an OCI Application

As Figure 1-1 shows, you compile and link an OCI program in the same way that
you compile and link a non-database application. There is no need for a separate
preprocessing or precompilation step.

Figure 1-1 The OCI Development Process

Source Files

'

Host Language Compiler

'

Obiject Files E —_j OCI Library
L

Host Linker ————

Application <+—)>

Note: To properly link your OCI programs, it may be necessary on
some platforms to include other libraries, in addition to the OCI
library. Check your Oracle platform-specific documentation for
further information about extra libraries that may be required.

1-28 Oracle Database Application Developer's Guide - Fundamentals

Overview of Oracle Data Provider for .NET (ODP.NET)

Overview of Oracle Data Provider for NET (ODP.NET)

Oracle Data Provider for NET (ODP.NET) is an implementation of a data provider
for Oracle Database.

ODP.NET uses APIs native to Oracle Database to offer fast and reliable access from
any .NET application to database features and data. It also uses and inherits classes
and interfaces available in the Microsoft NET Framework Class Library.

For programmers using Oracle Provider for OLE DB, ADO (ActiveX Data Objects)
provides an automation layer that exposes an easy programming model. ADO.NET
provides a similar programming model, but without the automation layer, for better
performance. More importantly, the ADO.NET model allows native providers such
as ODP.NET to expose specific features and datatypes specific to Oracle Database.

See Also: Oracle Data Provider for NET Developer’s Guide

Using ODP.NET in a Simple Application

The following is a simple C# application that connects to Oracle Database and
displays its version number before disconnecting.

using System;
using Oracle.DataAccess.Client;

class Example

{

OracleConnection con;

void Connect ()

{

con = new OracleConnection();

con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle";
con.Open() ;

Console.WriteLine ("Connected to Oracle" + con.ServerVersion) ;

}

void Close()

{

con.Close() ;
con.Dispose () ;

}

static void Main()

{

Programmatic Environments 1-29

Overview of Oracle Objects for OLE (0040)

Example example = new Example() ;
example.Connect () ;
example.Close () ;
}
}

Note: Additional samples are provided in directory ORACLE
BASE\ORACLE HOME\ODP.NET\Samples.

Overview of Oracle Objects for OLE (0040)

Oracle Objects for OLE (OO40) is a product designed to allow easy access to data
stored in Oracle Database with any programming or scripting language that
supports the Microsoft COM Automation and ActiveX technology. This includes
Visual Basic, Visual C++, Visual Basic For Applications (VBA), IIS Active Server
Pages (VBScript and JavaScript), and others.

See the OO40O online help for detailed information about using OO40.
Oracle Objects for OLE consists of the following software layers:

= 0040 "In-Process" Automation Server

= Oracle Data Control

= Oracle Objects for OLE C++ Class Library

Figure 1-2, "Software Layers" illustrates the OO40O software components.

1-30 Oracle Database Application Developer's Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

Figure 1-2 Software Layers

Data Aware
ActiveX
Controls

Automation
C++ Class Oracle Data Controllers

Libraries Control (VB, Excel, ASP)

COM/DCOM

0040
In-Process

Automation
Server

Oracle Client
Libraries
(OCl, CORE,
NLS)

Oracle
Database

0040 Automation Server

The O040 Automation Server is a set of COM Automation objects for connecting to
Oracle Database, executing SQL statements and PL/SQL blocks, and accessing the
results.

Unlike other COM-based database connectivity APIs, such as Microsoft ADO, the
0040 Automation Server has been developed and evolved specifically for use with
Oracle Database.

It provides an optimized API for accessing features that are unique to Oracle
Database and are otherwise cumbersome or inefficient to use from ODBC or OLE
database-specific components.

0040 provides key features for accessing Oracle Database efficiently and easily in
environments ranging from the typical two-tier client/server applications, such as
those developed in Visual Basic or Excel, to application servers deployed in

Programmatic Environments 1-31

Overview of Oracle Objects for OLE (0040)

multitiered application server environments such as Web server applications in
Microsoft Internet Information Server (IIS) or Microsoft Transaction Server (MTS).

Features include:

= Support for execution of PL/SQL and Java stored procedures, and PL/SQL
anonymous blocks. This includes support for Oracle datatypes used as
parameters to stored procedures, including PL/SQL cursors. See "Support for
Oracle LOB and Object Datatypes" on page 1-37.

= Support for scrollable and updatable cursors for easy and efficient access to
result sets of queries.

s Thread-safe objects and Connection Pool Management Facility for developing
efficient Web server applications.

= Full support for Oracle object-relational and LOB datatypes.
= Full support for Advanced Queuing.
= Support for array inserts and updates.

= Support for Microsoft Transaction Server (MTS).

0040 Object Model

The Oracle Objects for OLE object model is illustrated in Figure 1-3, "Objects and
Their Relations".

1-32 Oracle Database Application Developer's Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

Figure 1-3 Objects and Their Relations

OraSession

OraDatabase

OraServer

OraField

OraMDAttribute

~ & ~ &=

OraParameter
OraParamArray
—(OraSQLStmt
—(OraAQ OraAQMsg J

a
I— 17

OraSession
An OraSession object manages collections of OraDatabase, OraConnection, and
OraDynaset objects used within an application.

Typically, a single OraSession object is created for each application, but you can
create named OraSession objects for shared use within and between applications.

The OraSession object is the top-most object for an application. It is the only object
created by the CreateObject VB/VBA API and not by an Oracle Objects for OLE
method. The following code fragment shows how to create an OraSession object:

Dim OraSession as Object
Set OraSession = CreateObject ("OracleInProcServer.XOraSession")

OraServer

OraServer represents a physical network connection to Oracle Database.

The Oraserver interface is introduced to expose the connection-multiplexing
feature provided in the Oracle Call Interface. After an OraServer object is created,

multiple user sessions (OraDatabase) can be attached to it by invoking the
OpenDatabase method. This feature is particularly useful for application

Programmatic Environments 1-33

Overview of Oracle Objects for OLE (0040)

components, such as Internet Information Server (IIS), that use Oracle Objects for
OLE in n-tier distributed environments.

The use of connection multiplexing when accessing Oracle Database with a large
number of user sessions active can help reduce server processing and resource
requirements while improving server scalability.

OraServer is used to share a single connection across multiple OraDatabase objects
(multiplexing), whereas each OraDatabase obtained from an OraSession has its own
physical connection.

OraDatabase

An OraDatabase interface adds additional methods for controlling transactions
and creating interfaces representing of Oracle object types. Attributes of schema
objects can be retrieved using the Describe method of the OraDatabase
interface.

In releases prior to Oracle8i, an OraDatabase object is created by invoking the
OpenDatabase method of an OraSession interface. The Oracle Net alias, user
name, and password are passed as arguments to this method. In Oracle8i and later,
invocation of this method results in implicit creation of an OraServer object.

An OraDatabase object can also be created using the OpenDatabase method of
the OrasServer interface.

Transaction control methods are available at the OraDatabase (user session) level.
Transactions may be started as Read-Write (default), Serializable, or
Read-only. Transaction control methods include:

m BeginTrans

m CommitTrans

m RollbackTrans
For example:

UserSession.BeginTrans (0040 _TXN_READ WRITE)
UserSession.ExecuteSQL("delete emp where empno = 1234")
UserSession.CommitTrans

OraDynaset

An OraDynaset object permits browsing and updating of data created from a SQL
SELECT statement.

1-34 Oracle Database Application Developer's Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

The OraDynaset object can be thought of as a cursor, although in actuality several
real cursors may be used to implement the semantics of OraDynaset. An
OraDynaset object automatically maintains a local cache of data fetched from the
server and transparently implements scrollable cursors within the browse data.
Large queries may require significant local disk space; application developers are
encouraged to refine queries to limit disk usage.

OraField
An OraField object represents a single column or data item within a row of a

dynaset.

If the current row is being updated, then the OraField object represents the
currently updated value, although the value may not yet have been committed to
the database.

Assignment to the Value property of a field is permitted only if a record is being
edited (using Edit) or a new record is being added (using AddNew). Other attempts
to assign data to a field's Value property results in an error.

OraMetaData and OraMDAttribute

An OraMetaData object is a collection of OraMDAt t ribute objects that represent
the description information about a particular schema object in the database.

The OraMetaData object can be visualized as a table with three columns:
m Metadata Attribute Name
m Metadata Attribute Value
= Flag specifying whether the Value is another OraMetaData object

The OraMDAttribute objects contained in the OraMetaData object can be
accessed by subscripting using ordinal integers or by using the name of the
property. Referencing a subscript that is not in the collection results in the return of
a NULL OraMDAttribute object.

OraParameters and OraParameter
An OraParameter object represents a bind variable in a SQL statement or PL/SQL
block.

OraParameter objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value. You can automatically bind a parameter

Programmatic Environments 1-35

Overview of Oracle Objects for OLE (0040)

to SQL and PL/SQL statements of other objects (as noted in the object descriptions),
by using the parameter name as a placeholder in the SQL or PL/SQL statement.
Such use of parameters can simplify dynamic queries and increase program
performance.

OraParamArray

An OraParamArray object represents an array-type bind variable in a SQL
statement or PL/SQL block, as opposed to a scalar-type bind variable represented
by the OraParameter object.

OraParamArray objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each OraParamArray
object has an identifying name and an associated value.

OraSQLStmt

An OrasQLStmt object represents a single SQL statement. Use the CreateSQL
method to create an OraSQLStmt object from an OraDatabase object.

During create and refresh, OraSQLStmt objects automatically bind all relevant,
enabled input parameters to the specified SQL statement, using the parameter
names as placeholders in the SQL statement. This can improve the performance of
SQL statement execution without re-parsing the SQL statement.

The OrasQLStmt object can be used later to execute the same query using a
different value for the :SALARY placeholder. This is done as follows (updateStmt
is the OrasSQLStmt object here):

OraDatabase.Parameters ("SALARY") .value = 200000
updateStmt .Parameters ("ENAME") .value = "KING"
updateStmt.Refresh

OraAQ

An OraAQ object is instantiated by invoking the CreateAQ method of the
OraDatabase interface. It represents a queue that is present in the database.

Oracle Objects for OLE provides interfaces for accessing Oracle Advanced Queuing
(AQ) feature. It makes AQ accessible from popular COM-based development
environments such as Visual Basic. For a detailed description of Oracle Advanced
Queuing, refer to Oracle Streams Advanced Queuing User’s Guide and Reference.

1-36 Oracle Database Application Developer's Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

OraAQMsg

The OraAQMsg object encapsulates the message to be enqueued or dequeued. The
message can be of any user-defined or raw type.

For a detailed description of Oracle Advanced Queuing, refer to Oracle Streams
Advanced Queuing User’s Guide and Reference.

OraAQAgent

The OraAQAgent object represents a message recipient and is only valid for queues
that allow multiple consumers. It is a child of OraAQMsg.

An OraAQAgent object can be instantiated by invoking the AQAgent method. For
example:

Set agent = gMsg.AQAgent (name)
An OraAQAgent object can also be instantiated by invoking the AddRecipient
method. For example:

Set agent = gMsg.AddRecipient (name, address, protocol).

Support for Oracle LOB and Object Datatypes

Oracle Objects for OLE provides full support for accessing and manipulating
instances of object datatypes and LOBs in Oracle Database. Figure 1-4, "Supported
Oracle Datatypes" illustrates the datatypes supported by OO40.

Instances of these types can be fetched from the database or passed as input or
output variables to SQL statements and PL/SQL blocks, including stored
procedures and functions. All instances are mapped to COM Automation Interfaces
that provide methods for dynamic attribute access and manipulation.

Programmatic Environments 1-37

Overview of Oracle Objects for OLE (0040)

Figure 1-4 Supported Oracle Datatypes

[OraField

[OraParameter

—(OraCollection }—[Element Values
—(OraBLOB }
—(OraCLOB }
—(OraBFILE }

—(Value of all other scalar types J

—(OraRef }—[OraAttribute]D

[OraParamArray

OraBLOB and OraCLOB

The OraBlob and OraClob interfaces in Oracle Objects for OLE provide methods
for performing operations on large database objects of datatype BLOB, CLOB, and
NCLOB. BLOB, CLOB, and NCLOB datatypes are also referred to here as LOB
datatypes.

LOB data is accessed using Read and the CopyToFile methods.

LOB data is modified using Write, Append, Erase, Trim, Copy, CopyFromFile,
and CopyFromBFile methods. Before modifying the content of a LOB column in a
row, a row lock must be obtained. If the LOB column is a field of an OraDynaset,
object, then the lock is obtained by invoking the Edit method.

OraBFILE

The OraBFile interface in Oracle Objects for OLE provides methods for
performing operations on large database objects of datatype BFILE.

BFILE objects are large binary data objects stored in operating system files outside
of the database tablespaces.

1-38 Oracle Database Application Developer's Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

Oracle Data Control

Oracle Data Control (ODC) is an ActiveX Control that is designed to simplify the
exchange of data between Oracle Database and visual controls such edit, text, list,
and grid controls in Visual Basic and other development tools that support custom
controls.

ODC acts as an agent to handle the flow of information from Oracle Database and a
visual data-aware control, such as a grid control, that is bound to it. The data
control manages various user interface (Ul) tasks such as displaying and editing
data. It also executes and manages the results of database queries.

Oracle Data Control is compatible with the Microsoft data control included with
Visual Basic. If you are familiar with the Visual Basic data control, learning to use
Oracle Data Control is quick and easy. Communication between data-aware
controls and a Data Control is governed by a protocol that has been specified by
Microsoft.

Oracle Objects for OLE C++ Class Library

Oracle Objects for OLE C++ Class Library is a collection of C++ classes that provide
programmatic access to the Oracle Object Server. Although the class library is
implemented using OLE Automation, neither the OLE development kit nor any
OLE development knowledge is necessary to use it. This library helps C++
developers avoid the chore of writing COM client code for accessing the 0040
interfaces.

Additional Sources of Information

For detailed information about Oracle Objects for OLE refer to the online help
provided with the OO4O product:

= Oracle Objects for OLE Help
= Oracle Objects for OLE C++ Class Library Help

To view examples of how to use Oracle Objects for OLE, see the samples located in
the ORACLE_HOME\ 0040 directory of the Oracle Database installation. Additional
0040 examples can be found in the following Oracle publications:

» Oracle Database Application Developer’s Guide - Large Objects
» Oracle Streams Advanced Queuing User’s Guide and Reference

» PL/SQL Packages and Types Reference

Programmatic Environments 1-39

Choosing a Programming Environment

Choosing a Programming Environment

To choose a programming environment for a new development project:

Review the preceding overviews and the manuals for each environment.

Read the platform-specific manual that explains which compilers are approved
for use with your platforms.

If a particular language does not provide a feature you need, remember that
PL/SQL and Java stored procedures can both be called from code written in
any of the languages in this chapter. Stored procedures include triggers and
object type methods.

External procedures written in C can be called from OCI, Java, PL/SQL or SQL.
The external procedure itself can call back into the database using either SQL,
OCI, or Pro*C (but not C++).

The following examples illustrate easy choices:

Pro*COBOL does not support object types or collection types, while Pro*C/C++
does.

SQLJ does not support dynamic SQL the way that JDBC does.

Choosing Whether to Use OCI or a Precompiler

Precompiler applications typically contain less code than equivalent OCI
applications, which can help productivity.

Some situations require detailed control of the database and are suited for OCI
applications (either pure OCI or a precompiler application with embedded OCI
calls):

OCI provides more detailed control over multiplexing and migrating sessions.

OCI provides dynamic bind and define using callbacks that can be used for any
arbitrary structure, including lists.

OCT has many calls to handle metadata.

OCI allows asynchronous event notifications to be received by a client
application. It provides a means for clients to generate notifications for
propagation to other clients.

OCI allows DML statements to use arrays to complete as many iterations as
possible before returning any error messages.

1-40 Oracle Database Application Developer's Guide - Fundamentals

Choosing a Programming Environment

» OCI calls for special purposes include Advanced Queuing, globalization
support, Data Cartridges, and support of the date and time datatypes.

» OCI calls can be embedded in a Pro*C/C++ application.

Using Built-In Packages and Libraries
Both Java and PL/SQL have built-in packages and libraries.

PL/SQL and Java interoperate in the server. You can execute a PL/SQL package
from Java or wrap a PL/SQL class with a Java wrapper so that it can be called from
distributed CORBA and EJB clients. The following table shows PL/SQL packages
and their Java equivalents:

Table 1-1 PL/SQL and Java Equivalent Software

PL/SQL Package

Java Equivalent

DBMS_ALERT
DBMS_DDL
DBMS_JOB
DBMS_LOCK
DBMS_MAIL
DBMS_OUTPUT

DBMS_PIPE
DBMS_SESSION
DBMS_SNAPSHOT
DBMS_SQL
DBMS_TRANSACTION
DBMS_UTILITY
UTL_FILE

Call package with SQL]J or JDBC.

JDBC has this functionality.

Schedule a job that has a Java Stored procedure.
Call with SQLJ or JDBC.

Use JavaMail.

Use subclass
oracle.aurora.rdbms.OracleDBMSOutputStream or
Java stored procedure DBMS_JAVA.SET STREAMS.

Call with SQLJ or JDBC.

Use JDBC to execute an ALTER SESSION statement.
Call with SQLJ or JDBC.

Use JDBC.

Use JDBC to execute an ALTER SESSION statement.
Call with SQLJ or JDBC.

Grant the JAVAUSERPRIV privilege and then use Java I/O
entry points.

Java Compared to PL/SQL

Both Java and PL/SQL can be used to build applications in the database. Here are
some guidelines for their use:

Programmatic Environments 1-41

Choosing a Programming Environment

PL/SQL Is Optimized for Database Access

PL/SQL uses the same datatypes as SQL. SQL datatypes are thus easier to use and
SQL operations are faster than with Java, especially when a large amount of data is
involved, when mostly database access is done, or when bulk operations are used.

PL/SQL Is Integrated with the Database
PL/SQL is an extension to SQL offering data encapsulation, information hiding,
overloading, and exception-handling.

Some advanced PL/SQL capabilities are not available for Java in Oracle9i.
Examples are autonomous transactions and the dblink facility for remote databases.
Code development is usually faster in PL/SQL than in Java.

Both Java and PL/SQL Have Object-Oriented Features

Java has inheritance, polymorphism, and component models for developing
distributed systems. PL/SQL has inheritance and type evolution, the ability to
change methods and attributes of a type while preserving subtypes and table data
that use the type.

Java Is Used for Open Distributed Applications

Java has a richer type system than PL/SQL and is an object-oriented language. Java
can use CORBA (which can have many different computer languages in its clients)
and EJB. PL/SQL packages can be called from CORBA or EJB clients.

You can run XML tools, the Internet File System, or JavaMail from Java.

Many Java-based development tools are available throughout the industry.

1-42 Oracle Database Application Developer's Guide - Fundamentals

Part li

Designing the Database

This part contains the following chapters:

Chapter 2, "Selecting a Datatype"

Chapter 3, "Maintaining Data Integrity Through Constraints"
Chapter 4, "Selecting an Index Strategy"

Chapter 5, "How Oracle Database Processes SQL Statements"
Chapter 6, "Coding Dynamic SQL Statements"

Chapter 7, "Using Procedures and Packages"

Chapter 8, "Calling External Procedures"

2

Selecting a Datatype

This chapter discusses how to use Oracle built-in datatypes in applications. Topics
include:

= Summary of Oracle Built-In Datatypes

= Representing Character Data

= Representing Numeric Data with Number and Floating-Point Datatypes
= Representing Date and Time Data

= Representing Conditional Expressions as Data

= Representing Geographic Coordinate Data

= Representing Image, Audio, and Video Data

= Representing Searchable Text Data

= Representing Large Amounts of Data

= Addressing Rows Directly with the ROWID Datatype
= ANSI/ISO, DB2, and SQL/DS Datatypes

= How Oracle Database Converts Datatypes

= Representing Dynamically Typed Data

= Representing XML Data

Selecting a Datatype 2-1

Summary of Oracle Built-In Datatypes

See Also:

s Oracle Database Application Developer’s Guide - Object-Relational Features
for information about more complex types, such as object types,
varrays, and nested tables

s Oracle Database Application Developer’s Guide - Large Objects for
information about LOB datatypes

. PL/SQL User’s Guide and Reference for information about the PL/SQL
datatypes. Many SQL datatypes are the same or similar in PL/SQL.

Summary of Oracle Built-In Datatypes

A datatype associates a fixed set of properties with the values that can be used in a
column of a table or in an argument of a procedure or function. These properties
cause Oracle Database to treat values of one datatype differently from values of
another datatype. For example, Oracle Database can add values of NUMBER
datatype, but not values of RAW datatype.

Oracle supplies the following built-in datatypes:

s Character datatypes

CHAR

NCHAR

VARCHAR2 and VARCHAR (synonymous with VARCHAR?2)
NVARCHAR2

CLOB

NCLOB

LONG

= Numerical datatypes:

BINARY FLOAT
BINARY DOUBLE

NUMBER

= Time and date datatypes:

DATE

INTERVAL DAY TO SECOND

2-2 Oracle Database Application Developer's Guide - Fundamentals

Summary of Oracle Built-In Datatypes

— INTERVAL YEAR TO MONTH

- TIMESTAMP

— TIMESTAMP WITH TIME ZONE

— TIMESTAMP WITH LOCAL TIME ZONE
= Binary datatypes

— BLOB

BFILE

- RAW

LONG RAW
= Row address datatypes
— ROWID

— TUROWID

See Also:

» Oracle Database SQL Reference for general descriptions of these
datatypes

» Oracle Database Application Developer's Guide - Large Objects for
information about the LOB datatypes

Table 2-1 summarizes the information about each Oracle built-in datatype.

Selecting a Datatype 2-3

Summary of Oracle Built-In Datatypes

Table 2-1

Summary of Oracle Built-In Datatypes

Datatype

Description

Column Length / Default
Values

CHAR

[(size [BYTE | CHAR])]

VARCHAR?2
(size [BYTE | CHAR])

NCHAR [(size)]

NVARCHAR2 (size)

Fixed-length character data
of length size bytes or
characters.

Variable-length character
data, with maximum length
sizebytes or characters.
BYTE or CHAR indicates that
the column has byte or
character semantics,
respectively. A size must

be specified.

Fixed-length Unicode
character data of length
size characters. The
number of bytes is twice this
number for the AL16UTF16
encoding and 3 times this
number for the UTF8
encoding.)

Variable-length Unicode
character data of maximum
length size characters. The
number of bytes may be up
to 2 times size for a the
AL16UTF16 encoding and 3
times this number for the
UTF8 encoding. A size
must be specified.

2-4 Oracle Database Application Developer's Guide - Fundamentals

Fixed for every row in the
table (with trailing
blanks); maximum size is
2000 bytes per row,
default size is 1 byte per
row. When neither BYTE
nor CHAR is specified, the
setting of NLS_LENGTH_
SEMANTICS at the time of
column creation
determines which is used.
Consider the character set
(single-byte or multibyte)
before setting size.

Variable for each row, up
to 4000 bytes per row.
When neither BYTE nor
CHAR is specified, the
setting of NLS_LENGTH_
SEMANTICS at the time of
column creation
determines which is used.
Consider the character set
(single-byte or multibyte)
before setting size.

Fixed for every row in the
table (with trailing
blanks). The upper limit is
2000 bytes per row.
Default sizeis 1
character.

Variable for each row. The
upper limit is 4000 bytes
per row.

Summary of Oracle Built-In Datatypes

Table 2-1 (Cont.) Summary of Oracle Built-In Datatypes

Column Length / Default

Datatype Description Values
CLOB Single-byte or multibyte Up to 22 - 1 bytes *
Ehailac’fegcﬁita-(?o’fh (database block size), or 4
ixed-width an ; * e 1
i . gigabytes * block size." See
variable-width character Oracle Database Application
sets are supported, and Developer’s Guide - Large
both use the CHAR character Objects.
set.
NCLOB Unicode national character Up to 2%2- 1 bytes *
?et (CII\TCH‘ZR}?[datla. Both (database block size), or 4
ixed-width an ioabvtes * block size. !
variable-width character g;%ao}r’uizse D m,le(l; asselze
sets are supported, and Application Developer’s
both use the NCHAR Guide - Large Objects.
character set.
LONG Variable-length character Variable for each row in

BINARY FLOAT

BINARY DOUBLE

NUMBER
[(prec | prec, scale)]

data. Provided for
backward compatibility.

32-bit floating-point
number.

64-bit floating-point
number.

Variable-length numeric
data. Precision prec is the
the total number of digits;
scale scale is the number
of digits to the right of the
decimal point. Precision can
range from 1 to 38. Scale
can range from -84 to 127.
With precision specified,
this is a floating-point
number; with no precision
specified, it is a fixed-point
number.

the table, up to 2311
bytes, or 2 gigabytes, per
TOW.

4 bytes.
8 bytes.

Variable for each row. The
maximum space available
for a given column is 21
bytes per row.

Selecting a Datatype 2-5

Summary of Oracle Built-In Datatypes

Table 2-1 (Cont.) Summary of Oracle Built-In Datatypes

Datatype

Description

Column Length / Default
Values

DATE

INTERVAL YEAR
[(yr_prec)] TO MONTH

INTERVAL DAY
[(day prec)] TO SECOND
[(frac_sec prec)]

TIMESTAMP
[(frac _sec prec)]

Fixed-length date and time
data, ranging from Jan. 1,
4712 B.C.E. to Dec. 31, 9999
C.E.

A period of time,
represented as years and
months. The yr prec is
the number of digits in the
YEAR field of the date. The
precision can be from 0 to 9,
and defaults to 2 digits.

A period of time,
represented as days, hours,
minutes, and seconds. The
day precand frac_sec_
prec are the number of
digits in the DAY and the
fractional SECOND fields of
the date, respectively. These
precision values can each be
from 0 to 9, and they
default to 2 digits for day
prec and 6 digits for
frac sec prec.

A value representing a date
and time, including
fractional seconds. (The
exact resolution depends on
the operating system clock.)

The frac_sec prec
specifies the number of
digits in the fractional
second part of the SECOND
date field. The frac sec
preccanbe from 0to 9,
and defaults to 6 digits.

2-6 Oracle Database Application Developer's Guide - Fundamentals

Fixed at 7 bytes for each
row in the table. Default
format is a string (such as
DD-MON-RR) specified by
the NLS_DATE FORMAT
parameter.

Fixed at 5 bytes.

Fixed at 11 bytes.

Varies from 7 to 11 bytes,
depending on the
precision. The default is
determined by the NLS_
TIMESTAMP FORMAT
initialization parameter.

Summary of Oracle Built-In Datatypes

Table 2-1 (Cont.) Summary of Oracle Built-In Datatypes

Datatype

Description

Column Length / Default
Values

TIMESTAMP
[(frac _sec prec)] WITH
TIME ZONE

TIMESTAMP
[(frac _sec prec)] WITH
LOCAL TIME ZONE

BLOB

BFILE

RAW (size)

A value representing a date
and time, plus an associated
time zone setting. The time
zone can be an offset from
UTC,suchas'-5:0', ora
region name, such as
'US/Pacific’.

The frac sec precisas
for datatype TIMESTAMP.

Similar to TIMESTAMP
WITH TIME ZONE, except
that the data is normalized
to the database time zone
when stored, and adjusted
to match the client's time
zone when retrieved.

The frac sec precisas
for datatype TIMESTAMP.

Unstructured binary data.

Address of a binary file
stored outside the database.
Enables byte-stream I/O
access to external LOBs
residing on the database
server.

Variable-length raw binary
data. A size, which is the
maximum number of bytes,
must be specified. Provided
for backward compatibility.

Fixed at 13 bytes. The
default is determined by
the NLS_TIMESTAMP
TZ_FORMAT initialization
parameter.

Varies from 7 to 11 bytes,
depending on frac_
sec_prec. The default is
determined by the NLS_
TIMESTAMP_ FORMAT
initialization parameter.

Up to 2% - 1 bytes *
(database block size), or 4
gigabytes * block size.! See
Oracle Database Application
Developer’s Guide - Large
Objects.

The referenced file can be
up to 2% - 1 bytes *
(database block size), or 4
gigabytes * block size.! See
Oracle Database Application
Developer’s Guide - Large
Objects.

Variable for each row in
the table, up to 2000 bytes
per row.

Selecting a Datatype 2-7

Representing Character Data

Table 2-1 (Cont.) Summary of Oracle Built-In Datatypes

Column Length / Default

Datatype Description Values
LONG RAW Variable-length raw binary Variable for each row in
data. Provided for the table, up to 2% - 1
backward compatibility. bytes, or 2 gigabytes, per
row.
ROWID Base 64 binary data Fixed at 10 bytes

representing a row address. (extended ROWID) or 6
Used primarily for values bytes (restricted ROWID)

returned by the ROWID for each row in the table.
pseudocolumn.

UROWID [(size)] Base 64 binary data Maximum size and
representing the logical default are both 4000
address of a row in an bytes.

index-organized table. The
optional size is the
number of bytes in a
column of type UROWID.

! Prior to Oracle Database 10g, the limit was 4 gigabytes, not 4 gigabytes*blocksize.

Representing Character Data
Use the character datatypes to store alphanumeric data:
= CHAR and NCHAR datatypes store fixed-length character strings.

= VARCHAR2 and NVARCHAR2 datatypes store variable-length character strings.
(The VARCHAR datatype is synonymous with the VARCHAR2 datatype.)

= NCHAR and NVARCHAR2 datatypes store Unicode character data only.

= CLOB and NCLOB datatypes store single-byte and multibyte character strings of
up to four gigabytes.

See Also: Oracle Database Application Developer’s Guide - Large
Objects

= The LONG datatype stores variable-length character strings containing up to two
gigabytes, but with many restrictions. This datatype is provided only for
backward compatibility with existing applications. In general, new applications
should use CLOB and NCLOB datatypes to store large amounts of character data,
and BLOB and BFILE to store large amounts of binary data.

2-8 Oracle Database Application Developer's Guide - Fundamentals

Representing Character Data

See Also:

s Oracle Database Application Developer’s Guide - Large Objects for
information on LOB datatypes (including CLOB and NCLOB
datatypes) and information on migrating from LONG to LOB
datatypes

» Oracle Database SQL Reference for details on restrictions on LONG
datatypes

When deciding which datatype to use for a column that will store alphanumeric
data in a table, consider the following points of distinction:

» Space usage — To store data more efficiently, use the VARCHAR?2 datatype. The
CHAR datatype blank-pads and stores trailing blanks up to a fixed column
length for all column values, while the VARCHAR2 datatype does not add any
extra blanks.

» Comparison semantics — Use the CHAR datatype when you require ANSI
compatibility in comparison semantics (when trailing blanks are not important
in string comparisons). Use the VARCHAR2 when trailing blanks are important
in string comparisons.

» Future compatibility — The CHAR and VARCHAR?2 datatypes are and will always be
fully supported. At this time, the VARCHAR datatype automatically corresponds
to the VARCHAR?2 datatype and is reserved for future use.

CHAR, VARCHAR?2, and LONG data is automatically converted by the NLS LANGUAGE
parameter from the database character set to the character set defined for the user
session, if these are different.

Column Lengths for Single-Byte and Multibyte Character Sets

The lengths of CHAR and VARCHAR2 columns can be specified as either bytes or
characters.

The lengths of NCHAR and NVARCHAR?2 columns are always specified in characters,
making them ideal for storing Unicode data, where a character might consist of
multiple bytes.

-- ID contains only single-byte data, up to 32 bytes.

ID VARCHAR2 (32 BYTE);

-- NAME contains data in the database character set. The 32 characters might
-- be stored as more than 32 bytes, if the database character set allows

-- multibyte characters.

NAME VARCHAR? (32 CHAR) ;

Selecting a Datatype 2-9

Representing Character Data

-- BIOGRAPHY can represent 2000 characters in any Unicode-representable

-- language.

-- The exact encoding depends on the national character set, but the column can
-- contain multibyte values even if the database character set is single-byte.
BIOGRAPHY NVARCHAR?2 (2000) ;

-- The representation of COMMENT, as 2000 bytes or 2000 characters, depends

-- on the initialization parameter NLS LENGTH SEMANTICS.

COMMENT VARCHAR2 (2000) ;

When using a multibyte database character encoding scheme, consider carefully the
space required for tables with character columns. If the database character encoding
scheme is single-byte, then the number of bytes and the number of characters in a
column is the same. If it is multibyte, then there generally is no such
correspondence. A character might consist of one or more bytes, depending upon
the specific multibyte encoding scheme and whether shift-in/shift-out control codes
are present. To avoid overflowing buffers, specify data as NCHAR or NVARCHAR?2 if it
might use a Unicode encoding that is different from the database character set.

See Also:
» Oracle Database Globalization Support Guide

s Oracle Database SQL Reference

Implicit Conversion Between CHAR/VARCHAR2 and NCHAR/NVARCHAR2

In database releases prior to Oracle9i, the NCHAR and NVARCHAR?2 types were
difficult to use because they could not be interchanged with CHAR and VARCHAR2.
For example, an NVARCHAR?2 literal required special notation, such as N' string
value'. In releases after Oracle8i, you can specify NCHAR and NVARCHAR2 without
the N notation, and you can mix them with CHAR and VARCHAR2 values in SQL
statements and functions.

Comparison Semantics

Oracle Database compares CHAR and NCHAR values using blank-padded
comparison semantics. If two values have different character lengths, then Oracle
Database adds space characters at the end of the shorter value, until the two values
are the same length. Oracle Database then compares the values character by
character up to the first character that differs. The value with the greater character
in the first differing position is considered greater. Two values that differ only in the
number of trailing blanks are thus considered equal.

Oracle Database compares VARCHAR2 and NVARCHAR?2 values using non-padded
comparison semantics. Two values are considered equal only if they have the same

2-10 Oracle Database Application Developer's Guide - Fundamentals

Representing Numeric Data with Number and Floating-Point Datatypes

characters and are of equal length. Oracle Database compares the values
character-by-character up to the first character that differs. The value with the
greater character in that position is considered greater. If one value is a prefix of the
other, then it is considered less ("abc" < "abcxyz")

Because Oracle Database blank-pads values stored in CHAR columns but not in
VARCHAR2 columns, a value stored in a VARCHAR2 column may take up less space
than if it were stored in a CHAR column. For this reason, a full table scan on a large
table containing VARCHAR2 columns may read fewer data blocks than a full table
scan on a table containing the same data stored in CHAR columns. If your
application often performs full table scans on large tables containing character data,
then you might be able to improve performance by storing this data in VARCHAR2
columns rather than in CHAR columns.

However, performance is not the only factor to consider when deciding which of
these datatypes to use. Oracle Database uses different semantics to compare values
of each datatype. You might choose one datatype over the other if your application
is sensitive to the differences between these semantics. For example, if you want
Oracle Database to ignore trailing blanks when comparing character values, then
you must store these values in CHAR columns.

See Also: Oracle Database SQL Reference for more information on
comparison semantics for these datatypes

Representing Numeric Data with Number and Floating-Point Datatypes
The following SQL datatypes allow you to store numeric data:
u BINARY FLOAT
u BINARY DOUBLE
= NUMBER

The BINARY_ FLOAT and BINARY DOUBLE datatypes store floating-point data in
the 32-bit IEEE 754 format and the double precision 64-bit IEEE 754 format
respectively. Compared to the Oracle NUMBER datatype, arithmetic operations on
floating-point data are usually faster for BINARY FLOAT and BINARY DOUBLE.
Also, high-precision values require less space when stored as BINARY FLOAT and
BINARY DOUBLE.

In client interfaces supported by Oracle Database, arithmetic operations on
BINARY FLOAT and BINARY DOUBLE datatypes are performed by the native
instruction set supplied by the hardware vendor. The term native floating-point
datatypes is used here to refer to datatypes including BINARY FLOAT and

Selecting a Datatype 2-11

Representing Numeric Data with Number and Floating-Point Datatypes

BINARY DOUBLE, and to all implementations of these types in supported client
interfaces.

Floating-Point Number System Concepts

The floating-point number system is a common way of representing and
manipulating numeric values in computer systems. A floating-point number is
characterized by these components: a binary-valued sign, a signed exponent, a
significand, and a base. Its value is the signed product of its significand and the base
raised to the power of its exponent:

(-1)%8" significand - base ©Ponent

For example, the number 4.31 can be represented as (-1)°-431 - 10 2, with sign 0,
significand 431, base 10, and exponent -1.

A floating-point number format specifies how the components of a floating-point
number are represented. The choice of representation determines the range and
precision of the values the format can represent. By definition, the range is the
interval bounded by the smallest and the largest values the format can represent
and the precision is the number of digits in the significand.

Formats for floating-point values support neither infinite precision nor infinite
range. There are a finite number of bits to represent a number and only a finite
number of values that a format can represent. A floating-point number that uses
more precision than available with a given format is rounded.

A floating-point number can be represented in a binary system (one that uses base

2), as in the IEEE 754 standard, or in a decimal system (one that uses base 10), such
as Oracle NUMBER. The base affects many properties of the format, including how a
numeric value is rounded.

For a decimal floating-point number format like Oracle NUMBER, rounding is done
to the nearest decimal place (for example. 1000, 10, or 0.01). The IEEE 754 formats
use a binary format for floating-point values and round numbers to the nearest
binary place (for example: 1024, 512, or 1/64).

The native floating-point datatypes supported by the database round to the nearest
binary place, so they are not satisfactory for applications that require decimal
rounding. Use the Oracle NUMBER datatype for applications where decimal
rounding is required on floating-point data.

About Floating-Point Formats

The value of a floating-point number that uses a binary format is determined by:

2-12 Oracle Database Application Developer's Guide - Fundamentals

Representing Numeric Data with Number and Floating-Point Datatypes

(-1)°2F (bygb; b, ... bp-l)
where
s=0orl

E = any integer between E;, and E_,,, inclusive (see Table 2-2)

min
b; = 0 or 1; the sequence of bits represents a number in base 2
The leading bit of the significand, b,, must be set (1), except for subnormal numbers

(explained later). Consequently, the leading bit is not actually stored. Consequently,
the formats provide N bits of precision, although only N-1 bits are stored.

Note: The IEEE 754 specification also defines extended
single-precision and extended double-precision formats, which are
not supported by Oracle Database.

The parameters for these formats are listed in Table 2-2, and the storage parameters
for the formats are listed in Table 2-3. The in-memory formats for single-precision
and double-precision datatypes are specified by IEEE 754.

Table 2-2 Summary of Format Parameters

Parameter Single-precision (32-bit) Double-precision (64-bit)
P 24 53

Epnin -126 -1022

E +127 +1023

max

Table 2-3 Summary of Storage Parameters

Datatype Sign bits Exponent bits Significand bits Total bits
single-precision 1 8 24 (23 stored) 32
double-precision 1 11 53 (52 stored) 64

A significand is normalized when the leading bit of the significand is set. IEEE 754
defines denormal or subnormal values as numbers that are too small to be
represented with an implied leading set bit in the significand. The number is too

Selecting a Datatype 2-13

Representing Numeric Data with Number and Floating-Point Datatypes

small because its exponent would be too large if its significand were normalized to
have an implied leading bit set. IEEE 754 formats support subnormal values.
Subnormal values preserve the following property:

if: x - y == 0.0 (using floating-point subtraction)
then: x ==

Table 2—4 shows the range and precision of the required formats in the IEEE 754
standard and those of Oracle NUMBER. Range limits are expressed here in terms of
positive numbers; they also apply to the absolute value of a negative number. (The
notation "number e exponent" used here stands for number multiplied by 10 raised to
the exponent power: number - 10 ©Ponet,)

Table 2-4 Range and Precision of IEEE 754 formats

Range and Single-precision Double-precision Oracle NUMBER
Precision 32-bit! 64-bit’ Datatype
Max positive normal 3.40282347e+38 1.7976931348623157 < 1.0e126
number e+308

Min positive normal 1.17549435e-38 2.2250738585072014 1.0e-130
number e-308

Max positive 1.17549421e-38 2.2250738585072009 not applicable
subnormal number e-308

Min positive 1.40129846¢-45 4.9406564584124654 not applicable
subnormal number e-324

Precision (decimal 6-9 15-17 38 -40

digits)

! These numbers are quoted from the IEEE Numerical Computation Guide.

See Also: Oracle Database SQL Reference

Representing Special Values with Native Floating-Point Formats

IEEE 754 allows special values to be represented. These special values are positive
infinity (+INF), negative infinity (-INF), and not-a-number (NaN). IEEE 754 also
distinguishes between positive zero (+0) and negative zero (-0). NaN is used to
represent results of operations that are undefined.

There are many bit patterns in IEEE 754 that represent NaN. Bit patterns can
represent NaN with and without the sign bit set. IEEE 754 distinguishes between
signalling NaNs and quiet NaNs. IEEE 754 specifies behavior for when exceptions

2-14 Oracle Database Application Developer's Guide - Fundamentals

Representing Numeric Data with Number and Floating-Point Datatypes

are enabled and disabled. Oracle Database does not allow exceptions to be enabled;
the database behavior is that specified by IEEE 754 for when exceptions are
disabled. In particular, no distinction is made between signalling NaNs and quiet
NaNs. Programmers using Oracle Call Interface can retrieve NaN values from
Oracle Database; whether a retrieved NaN value is signalling or quiet is dependent
on the client platform and beyond the control of Oracle Database.

IEEE 754 does not define the bit pattern for either type of NaN. Positive infinity,
negative infinity, positive zero, and negative zero are each represented by a specific
bit pattern.

Ignoring signs, there are five classes of values: zero, subnormal, normal, infinity and
NaN. The first four classes are ordered as:

zero < subnormal < normal < infinity

In IEEE 754, NaN is unordered with other classes of special values and with itself.

Behavior of Special Values for Native Floating-Point Datatypes

When used with the database, special values of native floating-point datatypes
behave as follows:

= All NaNs are quiet.
= IEEE 754 exceptions are not raised.
= NaNis ordered:

all non-NaN < NaN

any NaN == any other NaN
s -0is converted to +0.
= All NaNs are converted to the same bit pattern.

See Also: "Comparison Operators for Native Floating-Point

Datatypes" on page 2-16 for more information on NaN compared to
other values

Rounding of Native Floating-Point Datatypes

IEEE 754 defines four rounding modes. The rounding modes are: round to nearest
(default), round to positive infinity, round to negative infinity, and round to zero. Oracle
Database supports only round to nearest mode.

Selecting a Datatype 2-15

Representing Numeric Data with Number and Floating-Point Datatypes

Comparison Operators for Native Floating-Point Datatypes

Comparison operators are defined for equal to, not equal to, greater than, greater than
or equal to, less than, less than or equal to, and unordered. There are special cases:

= Comparisons ignore the sign of zero (-0 is equal to, not less than, +0).

= In Oracle Database, NaN is equal to itself. NaN is greater than everything
except itself. That is, NaN == NaN and NaN > x, unless x is NaN.

See Also: "Behavior of Special Values for Native Floating-Point
Datatypes" on page 2-15 for more information on comparison
results, ordering, and other behaviors of special values

Arithmetic Operators for Native Floating-Point Datatypes

Arithmetic operators are defined for multiplication, division, addition, subtraction,
remainder, and square root. The mode used to round the result of the operation can
be defined. Exceptions can be raised when operations are performed. Exceptions
can also be disabled.

Until recently, Java required floating-point arithmetic to be exactly reproducible.
IEEE 754 does not require such behavior. IEEE 754 allows for the result of
operations, including arithmetic, to be delivered to a destination that uses a range
greater than that used by the operands to the operation. The result of a
double-precision multiplication can be computed at an extended double-precision
destination. When this is done, the result must be rounded as if the destination were
single-precision or double-precision. However, the range of the result (the number
of bits used for the exponent) can use the range supported by the wider (extended
double-precision) destination. This may result in a double-rounding error in which
the least significant bit of the result is incorrect.

This can only occur for double-precision multiplication and division on hardware
that implements the IA-32 and IA-64 instruction set architecture. Thus, with the
exception of this case, arithmetic for these datatypes will be reproducible across
platforms. When the result of a computation is NaN, all platforms will produce a
value for which IS NAN is true. However, all platforms do not have to use the same
bit pattern.

Conversion Functions for Native Floating-Point Datatypes

Functions are defined that convert between floating-point and other formats,
including string formats that use decimal precision. Precision may be lost during

2-16 Oracle Database Application Developer's Guide - Fundamentals

Representing Numeric Data with Number and Floating-Point Datatypes

the conversion. Exceptions can be raised during conversion. The following
conversions can be done:

float to double

double to float

float/double to decimal (string)

decimal (string) to float/double
float/double to integer valued float/double

Exceptions for Native Floating-Point Datatypes

The IEEE 754 specification defines the following exceptions that can be thrown:
invalid, inexact, divide by zero, underflow, and overflow. Oracle Database does not raise
these exceptions for native floating-point datatypes. Generally, situations that
would raise an exception produce the following values:

Exception Value
Underflow 0

Overflow -INF, +INF
Invalid Operation NaN

Divide by Zero -INF, +INF, NaN
Inexact any value —

rounding was
performed

Selecting a Datatype 2-17

Representing Numeric Data with Number and Floating-Point Datatypes

Client Interfaces for Native Floating-Point Datatypes

Support for native floating-point datatypes is implemented in the following client

interfaces:
= SQL
« PL/SQL
« OCI
= OCCI
» Pro*C/C++
= JDBC

SQL Native Floating-Point Datatypes

The SQL datatypes BINARY FLOAT and BINARY DOUBLE implement native
floating-point datatypes in the SQL environment. A number of SQL functions are
provided that operate on these datatypes. BINARY FLOAT and BINARY DOUBLE
are supported wherever an expression (expr) appears in SQL syntax.

See Also: Oracle Database SQL Reference for details on SQL
functions and the implementation of these datatypes

OCI Native Floating-Point Datatypes SQLT_BFLOAT and SQLT_BDOUBLE

The Oracle Call Interface (OCI) application programming interface (API)
implements the IEEE 754 single precision and double precision native floating-point
datatypes with the datatypes SQLT BFLOAT and SQLT BDOUBLE respectively.

Conversions between these types and the SQL types BINARY FLOAT and BINARY
DOUBLE are exact on platforms that implement the IEEE 754 standard for the C
datatypes £loat and double.

See Also: Oracle Call Interface Programmer’s Guide
Native Floating-Point Datatypes Supported in Oracle OBJECT Types

The SQL datatypes BINARY FLOAT and BINARY_ DOUBLE are supported as
attributes of Oracle OBJECT types.

2-18 Oracle Database Application Developer's Guide - Fundamentals

Representing Numeric Data with Number and Floating-Point Datatypes

Pro*C/C++ Support for Native Floating-Point Datatypes

s Pro*C/C++ supports the native £1oat and native double datatypes using the
column datatypes BINARY FLOAT and BINARY DOUBLE. These datatypes can
be used in the same way the Oracle NUMBER datatype is used. You can bind the
native C/C++ datatypes £1loat and double to BINARY FLOAT and BINARY
DOUBLE types respectively. To do so, set the Pro*C/C++ precompiler command
line option NATIVE TYPES to Y (yes) when you compile your application.

Storing Data Using the NUMBER Datatype

Use the NUMBER datatype to store real numbers in a fixed-point or floating-point
format. Numbers using this datatype are guaranteed to be portable among different
Oracle Database platforms, and offer up to 38 decimal digits of precision. You can
store positive and negative numbers of magnitude 1 x 10"*° through 9.99 x10'%, as
well as zero, in a NUMBER column.

You can specify that a column contains a floating-point number, for example:
distance NUMBER

Or, you can specify a precision (total number of digits) and scale (number of digits
to the right of the decimal point):

price NUMBER (8, 2)

Although not required, specifying precision and scale helps to identify bad input

values. If a precision is not specified, the column stores values as they are provided.
Table 2-5 shows examples of how data different scale factors affect storage.

Table 2-5 How Scale Factors Affect Numeric Data Storage

Input Data Specified As Stored As

7,456,123.89 NUMBER 7456123.89

7,456,123.89 NUMBER (9) 7456124

7,456,123.89 NUMBER (9,2) 7456123.89

7,456,123.89 NUMBER (9,1) 7456123.9

7,456,123.89 NUMBER (6) (not accepted; value exceeds precision)
7,456,123.89 NUMBER (7, -2) 7456100

Selecting a Datatype 2-19

Representing Date and Time Data

See Also: Oracle Database Concepts for information about the
internal format for the NUMBER datatype

Representing Date and Time Data

Use the DATE datatype to store point-in-time values (dates and times) in a table. The
DATE datatype stores the century, year, month, day, hours, minutes, and seconds.

Use the TIMESTAMP datatype to store values that are precise to fractional seconds.
For example, an application that must decide which of two events occurred first
might use TIMESTAMP. An application that needs to specify the time for a job to
execute might use DATE.

Because TIMESTAMP WITH TIME ZONE can also store time zone information, it is
particularly suited for recording date information that must be gathered or
coordinated across geographic regions.

Use TIMESTAMP WITH LOCAL TIME ZONE when the time zone is not significant.
For example, you might use it in an application that schedules teleconferences,
where participants each see the start and end times for their own time zone.

The TIMESTAMP WITH LOCAL TIME ZONE type is appropriate for two-tier
applications where you want to display dates and times using the time zone of the
client system. It is generally inappropriate in three-tier applications such as those
involving a Web server, because data displayed in a Web browser is formatted
according to the time zone of the Web server, not the time zone of the browser. (The
Web server is the database client, so its local time is used.)

Use INTERVAL DAY TO SECOND to represent the precise difference between two
DATETIME values. For example, you might use this value to set a reminder for a
time 36 hours in the future, or to record the time between the start and end of a race.
To represent long spans of time, including multiple years, with high precision, you
can use a large value for the days portion.

Use INTERVAL YEAR TO MONTH to represent the difference between two
DATETIME values, where the only significant portions are the year and the month.
For example, you might use this value to set a reminder for a date 18 months in the
future, or check whether 6 months have elapsed since a particular date.

Oracle Database uses its own internal format to store dates. Date data is stored in
fixed-length fields of seven bytes each, corresponding to century, year, month, day,
hour, minute, and second.

2-20 Oracle Database Application Developer's Guide - Fundamentals

Representing Date and Time Data

Date Format

See Also: Oracle Call Interface Programmer’s Guide for a complete
description of the Oracle Database internal date format

For input and output of dates, the standard Oracle Database default date format is
DD-MON-RR. For example:

'13-NOV-92'

To change this default date format on an instance-wide basis, use the NLS DATE
FORMAT parameter. To change the format during a session, use the ALTER SESSION
statement. To enter dates that are not in the current default date format, use the TO
DATE function with a format mask. For example:

TO_DATE ('November 13, 1992', 'MONTH DD, YYYY')

See Also: Oracle Database Concepts for information about Julian
dates. Oracle Database Julian dates might not be compatible with
Julian dates generated by other date algorithms.

Be careful using a date format like DD-MON-YY. The YY indicates the year in the
current century. For example, 31-DEC-92 is December 31, 2092, not 1992 as you might
expect. If you want to indicate years in any century other than the current one, use a
different format mask, such as the default RR.

Checking If Two DATE Values Refer to the Same Day

To compare dates that have time data, use the SQL function TRUNC to ignore the
time component.

Displaying the Current Date and Time
Use the SQL function SYSDATE to return the system date and time.

Setting SYSDATE to a Constant Value

The FIXED DATE initialization parameter lets you set SYSDATE to a constant,
which can be useful for testing.

Printing a Date with BC/AD Notation

SQL> -- By default, the date is printed without any BC or AD qualifier.
SQL> SELECT SYSDATE FROM DUAL;

Selecting a Datatype 2-21

Representing Date and Time Data

Time Format

SYSDATE

24-JAN-02

SQL> -- Adding BC to the format string prints the date with BC or AD
SQL> -- as appropriate.

SQL> SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY BC') FROM DUAL;

TO_CHAR (SYSDAT

24-JAN-2002 AD

Time is stored in 24-hour format, HH24 : MI: SS. By default, the time in a DATE
column is 12:00:00 A.M. (midnight) if no time portion is entered, or if the DATE is
truncated. In a time-only entry, the date portion defaults to the first day of the
current month. To enter the time portion of a date, use the TO_DATE function with a
format mask indicating the time portion, as in:

INSERT INTO Birthdays tab (bname, bday) VALUES
('ANNIE‘,TO_DATE('13—NOV—92 10:56 A.M.', 'DD-MON-YY HH:MI A.M.'));

Note: You may need to set up the following data structures for
certain examples to work:

CREATE TABLE Birthdays tab (Bname VARCHAR2 (20),Bday DATE)

Performing Date Arithmetic

Oracle Database provides a number of features to help with date arithmetic, so that
you do not need to perform your own calculations on the number of seconds in a
day, the number of days in each month, and so on.

Some useful functions include:
n ADD_MONTHS

n SYSDATE

n SYSTIMESTAMP

= TRUNC. When applied to a DATE value, it trims off the time portion so that it
represents the very beginning of the day (the stroke of midnight). By truncating

2-22 Oracle Database Application Developer's Guide - Fundamentals

Representing Date and Time Data

two DATE values and comparing them, you can check whether they refer to the
same day. You can also use TRUNC along with a GROUP BY clause to produce
daily totals.

Arithmetic operators such as + and -.

INTERVAL datatype. To represent constants when performing date arithmetic,
you can use the INTERVAL datatype rather than performing your own
calculations. For example, you might add or subtract INTERVAL constants from
DATE values, or subtract two DATE values and compare the result to an
INTERVAL.

Comparison operators such as >, <, =, and BETWEEN.

Converting Between Datetime Types
Some useful functions include:

EXTRACT
NUMTODSINTERVAL
NUMTOYMINTERVAL

TO_DATE (and its opposite, TO_CHAR)
TO_DSINTERVAL

TO_TIMESTAMP

TO_TIMESTAMP_ TZ

TO_YMINTERVAL

See Also: Oracle Database SQL Reference for full details about each
function

Handling Time Zones

Oracle Database provides a number of functions to help with calculations involving
time zones. For example, TO_ DATE does not work with values of type TIMESTAMP
WITH TIME ZONE; you mustuse TO_TIMESTAMP TZ instead.

Some useful functions include:

CURRENT_DATE
CURRENT_TIMESTAMP

DBTIMEZONE

Selecting a Datatype 2-23

Representing Date and Time Data

= EXTRACT

= FROM TZ

= LOCALTIMESTAMP
» SESSIONTIMEZONE
» SYS_EXTRACT UTC
= SYSTIMESTAMP

= TO TIMESTAMP TZ

See Also: Oracle Database SQL Reference

Importing and Exporting Datetime Types

TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE
values are always stored in normalized format, so that you can export, import, and
compare them without worrying about time zone offsets. DATE and TIMESTAMP
values do not store an associated time zone, and you must adjust them to account
for any time zone differences between source and target databases.

Establishing Year 2000 Compliance

An application must satisfy the following criteria to meet the requirements for Year
2000 (Y2K) compliance:

» Process date information before, during, and after 1st January 2000 without
error. This entails accepting date input, providing date output, storing date
information and performing calculation on dates or portions of dates.

= Provide services as published in its documentation before, during and after 1st
January 2000 without changes in operation resulting from the advent of the new
century.

= Respond to two-digit date input in a way that resolves ambiguity as to the
century in a clearly defined manner.

= Manage the leap year occurring in the year 2000 according to the
quad-centennial rule.

These criteria are a superset of the Year 2000 conformance requirements set out by
the British Standards Institute in DISC PD-2000-1, A Definition of Year 2000
Conformity Requirements.

2-24 Oracle Database Application Developer's Guide - Fundamentals

Representing Date and Time Data

You can warrant your application as Y2K compliant only if you have validated its
conformance at all three of the following system levels:

s Hardware

= System software, including databases, transaction processors and operating
systems

= Application software, from third parties or developed in-house

Oracle Server Year 2000 Compliance

The Oracle Server is Year 2000 compliant. Oracle's Development Organization has
conducted tests of various Year 2000 operational scenarios to verify that there is no
impact to users with respect to the year 2000. These scenarios included tests of
replication, point-in-time recovery, distributed transactions. System management
and networking features across time zones / datelines / centuries have also been
tested.

Oracle's Year 2000 product compliance does not eliminate the need for you to test
your own applications. Most importantly, your application software must be tested
on Oracle Database to ensure that operations having to do with the year 2000
perform as promised. This test is critical even if the application software is certified
to be Year 2000 compliant, because there are no universal protocol definitions that
can guarantee conformance without such testing.

Centuries and the Year 2000

Oracle Database stores year data with the century information. For example, it
stores 1996 or 2001, and not just 96 or 01. The DATE datatype always stores a
four-digit year internally, and all other dates stored internally in the database also
have four digit years. Oracle Database utilities such as import, export, and recovery
also deal properly with four-digit years.

Applications that use Oracle Database (version 7 or later) and exploit the DATE
datatype (for dates or dates with time values) need have no concerns about their
stored data and the year 2000. Beginning with Oracle Database version 7, the DATE
datatype stores date and time data to a precision that includes a four digit year and
a time component down to seconds (typically 'YYYY:MM:DD:HH24 :MI:SS')

However, some applications might be written with an assumption about the year
(such as assuming that everything is 19xx). Such an application might hand over a
two-digit year to the database, and the procedures that Oracle Database uses for
determining the century could be different from what the programmer expects (see

Selecting a Datatype 2-25

Representing Date and Time Data

"Troubleshooting Y2K Problems in Applications" on page 2-29). For this reason, you
should review and test your code with regard to years in different centuries.

Examples of The RR Date Format

The RR date format element of the TO_DATE and TO_CHAR functions allows a
database site to default the century to different values depending on the two-digit
year, so that years 50 to 99 default to 19xx and years 00 to 49 default to 20xx.
Therefore, regardless of the current century at the time the data is entered, the RR
format will ensure that the year stored in the database is as follows:

s If the current year is in the second half of the century (50 - 99), and a two-digit
year between 00 and 49 is entered, this will be stored as a "next century" year.
For example, 02 entered in 1996 will be stored as 2002.

s If the current year is in the second half of the century (50 - 99), and a two-digit
year between 50 and 99 is entered, this will be stored as a "current century"
year. For example, 97 entered in 1996 will be stored as 1997.

» If the current year is in the first half of the century (00 - 49), and a two-digit year
between 00 and 49 is entered, this will be stored as a "current century" year.
For example, 02 entered in 2001 will be stored as 2002.

s If the current year is in the first half of the century (00 - 49), and a two-digit year
between 50 and 99 is entered, this will be stored as a "previous century" year.
For example, 97 entered in 2001 will be stored as 1997.

The RR date format is available for inserting and updating DATE data in the
database. It is not required for retrieval or query of data already stored in the
database as Oracle Database has always stored the YEAR component of a date in its
four-digit form.

Here is an example of the RR usage:
INSERT INTO employees (employee id, department id, hire date) VALUES
(9999, 20, TO DATE(’01-jan-03’, ’'DD-MON-RR’));

INSERT INTO employees (employee id, department id, hire date) VALUES
(8888, 20, TO DATE(’'0l1-jan-67', 'DD-MON-RR'));

SELECT employee id, department id,

TO_CHAR (hire date, ’'DD-MON-YYYY’) hire date
FROM employees;

2-26 Oracle Database Application Developer's Guide - Fundamentals

Representing Date and Time Data

Examples of The CC Date Format

The cC date format element of the TO CHAR function returns the century of a given
date. For example:

SELECT TO_CHAR(TO DATE('01-JAN-2000', 'DD-MON-YYYY'),'CC') CENTURY FROM DUAL;

CENTURY

SELECT TO_CHAR(TO DATE('01-JAN-2001', 'DD-MON-YYYY'),'CC') CENTURY FROM DUAL;

CENTURY

The cC date format element of the TO CHAR function sets the century value to one
greater than the first two digits of a four-digit year (for example, 20 from 1900). For
years that are a multiple of 100, this is not the true century. Strictly speaking, the
century of year 1900 is not the twentieth century (which began in 1901) but rather
the nineteenth century.

The following workaround computes the correct century for any Common Era (CE,
formerly known as AD) date. If Hiredate is a CE date for which you want the true
century, use the following expression:

SELECT DECODE (TO_CHAR (Hiredate, 'YY'),
'00', TO_CHAR (Hiredate - 366, 'CC'),
TO CHAR (Hiredate, 'CC')) FROM Emp_tab;

This expression works as follows: Get the last two digits of the year. If these are 00,
then this is a year in which the Oracle Database century is one year too large, so
compute a date in the preceding year (whose Oracle Database century is the desired
true century). Otherwise, use the Oracle Database century.

See Also: Oracle Database SQL Reference for more information
about date format codes

Storing Dates in Character Datatypes

Where applications store date values in CHAR or VARCHAR2 datatypes, and the
century information is not maintained. You will need to modify the application to
include routines to ensure that such dates are treated appropriately when affected
by the change in century. You can do this by changing the strings to maintain

Selecting a Datatype 2-27

Representing Date and Time Data

century information or, with certain constraints, by using the RR date format when
interpreting the string as a date.

If you are creating a new application, or if you are modifying an application to
ensure that dates stored as character strings are Year 2000 compliant, convert
character datatype dates to the DATE datatype. If this is not feasible, store the dates
in a form that is language- and format-independent, and that handles full years. For
example, use SYYYY/MM/DD plus the time element as HH24 : MI : SS if necessary.
Note that dates stored in this form must be converted to the correct external format
whenever they are received or displayed.

The format SYYYY/MM/DD HH24 :MI: SS has the following advantages:
» Itislanguage-independent in that the months are numeric.
= It contains the full four-digit year, so centuries are explicit.

= The time is represented fully. Since the most significant elements occur first,
character-based sort operations process the dates correctly.

The s format mask prefixes BC dates with "-".

Viewing Date Settings
The following views let you verify what your date settings are:
= VSNLS_ DATABASE PARAMETERS shows instance-wide Globalization Support

parameters, whether or not the values were explicitly declared in the
initialization parameter file.

= NLS_ SESSION_ PARAMETERS shows current session values, which may have
been changed by ALTER SESSION.

To see the available values for time zone region and time zone abbreviation, you can
query the view VSTIMEZONE NAMES.

A format mask is a character that describes the format of DATE or NUMBER data
stored in a character string. You may use the format model as an argument of the
TO_CHAR or TO_DATE function for one of the following:

= To specify the format for Oracle Database to use in returning a value.

= To specify the format for a value you have specified for Oracle Database to
store.

Note: The format mask does not change the internal
representation of the value in the database.

2-28 Oracle Database Application Developer's Guide - Fundamentals

Representing Date and Time Data

Altering Date Settings

You may set the date format in your environment or the default date format for the
entire database. If you set the format in your environment, it will override any
initialization settings.

Change the NLS DATE FORMAT parameter settings in the following order:

1. Set the Client side, such as the Windows NT registry and Unix environment
variables.

2. Set the session using ALTER SESSION SET NLS DATE FORMAT. To change
the date format for the session, issue the following SQL command:

ALTER SESSION SET NLS_DATE FORMAT = 'DD-MON-RR'
3. Set the Server using the NLS_DATE FORMAT parameter in your initialization

file, init . ora. To change the default date format for the entire database, edit
file init.ora to include the following

NLS DATE FORMAT = DD-MON-RR

The NLLS_DATE FORMAT setting relies on this order. For a client/server application,
NLS_ DATE FORMAT must be set on both the server and the client.

Caution: Changing this parameter at the database level will change
all existing date fields, as described. Make changes at the session
level, unless all users and all currently running applications process
dates in the range 1950-2049.

Troubleshooting Y2K Problems in Applications

In this section we describe some common programming problems around Y2K
compliance. These problems may seem to derive from incorrect Year 2000
processing by the database engine, but on closer inspection they are seen to arise
from incorrect use of Oracle Database technology.

Y2K Example: Date Columns Too Short

Your application may have defined the year of a date using a column of CHAR (2)
or NUMBER (2) in order to save disk space. This can lead to unpredictable results
when 20xx dates are mixed with 19xx dates. To resolve this, modify your
application to use the full 4-digit year.

Selecting a Datatype 2-29

Representing Date and Time Data

Y2K Example: 4-Digit Years Mixed with 2-Digit Years

Your application may be designed to store a 4-digit year, but the code may allow for
the incorrect storage of 2-digit year rows with the 4-digit year rows. This will lead to
unpredictable results for queries by date if the date columns contains dates earlier
than 1900. To deal with this problem, have your application check for rows that
contain dates earlier than 1900, and then adjust for this.

Y2K Example: Wide Range of Years Stored as Two Digits

Examine your applications to determine if it processes dates prior to 1950 or later
than 2049, and stores the year as only two digits. If both conditions are met, your
application should not use the RR format, but should instead expand the 2-digit
year YY into a 4-digit year YYYY, and store the 4-digit year in the database.

Y2K Example: Handling Feb. 29, 2000

The following unusual error helps illuminate the interaction between NLS_DATE
FORMAT and the Oracle Database RR format mask. The following is a syntactically
correct statement, but it contains a logical flaw:

SELECT TO_CHAR(TO_DATE (LAST DAY ('01-FEB-00'),'DD-MON-RR'), 'MM/DD/RRRR')
FROM DUAL;

This query returns 02/28/2000. This is consistent with the defined behavior of the
RR format mask, but it is incorrect because the year 2000 is a leap year.

The problem is that the operation is using the default NLS_DATE FORMAT, which is
DD-MON-YY. If the NLS DATE_ FORMAT is changed to DD-MON-RR, then the same
select returns 02/29/2000, which is the correct value.

Let us evaluate the query asOracle Database does. The first function processed is
the innermost function, LAST DAY. Because NLS_DATE FORMAT is YY, this correctly
returns 2 /28, because it is using the year 1900 to evaluate the expression. The value
2/28 is then returned to the next outer function. So, the TO DATE and TO CHAR
functions format the val